金属有机框架(MOFs)衍生物的制备及其在电催化方面的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Application of Metal Organic Frameworks Derivatives in Electro-Catalysis
  • 作者:朱静怡 ; 梁风 ; 姚耀春 ; 马文会 ; 杨斌 ; 戴永年
  • 英文作者:Zhu Jingyi;Liang Feng;Yao Yaochun;Ma Wenhui;Yang Bin;Dai Yongnian;Yunnan Key Laboratory of Nonferrous Metals Vacuum Metallurgy,Vacuum Metallurgical National Engineering Laboratory,Kunming University of Science and Technology;State Key Laboratory of Complex Nonferrous Metal Resources Clear Utilization in Yunnan Province,Kunming University of Science and Technology;
  • 关键词:金属有机框架 ; 电化学催化剂 ; 氧还原反应 ; 析氢反应
  • 英文关键词:metal-organic framework;;electrochemical catalyst;;oxygen reduction reaction;;hydrogen evolution reaction
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:昆明理工大学真空冶金国家工程实验室云南省有色金属真空冶金重点实验室;昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室;
  • 出版日期:2018-08-01 17:45
  • 出版单位:稀有金属
  • 年:2019
  • 期:v.43;No.275
  • 基金:国家自然科学基金项目(51704136,11765010);; 云南省应用基础研究面上项目(2016FB087);; 云南省院士自由探索基金项目(2017HA006,2016FB087)资助
  • 语种:中文;
  • 页:ZXJS201902011
  • 页数:15
  • CN:02
  • ISSN:11-2111/TF
  • 分类号:77-91
摘要
金属有机框架(MOFs)是由金属离子或团簇和有机配体组成的、由中等强度的配位键连接起来的具有分子内孔隙的有机-无机杂化材料。MOFs具有比表面积大、孔隙度高、结构多样性及孔道表面可修饰等特点,因此, MOFs衍生材料在催化领域得到了广泛的研究和应用。近年来,在电化学催化领域,大量的由MOFs衍生得到的碳纳米材料或纳米颗粒与碳的复合物被运用于电催化时表现出优异的催化性能。为了制备出具有不同催化功能且高效的MOFs衍生物催化剂,需要重点关注MOFs材料本身的特性(结构、杂原子掺杂等)与热处理条件(活化气氛、温度、时间和加热梯度)等条件对催化剂电催化性能的影响。因此,主要从不同金属中心离子的角度介绍了以MOFs为前驱体制备多孔碳纳米材料、纳米颗粒/碳复合物的方法及其在还原反应(ORR),析氢反应(HER)两大电化学催化方面的应用,并对MOFs衍生物催化剂未来的发展趋势进行了展望。
        Metal-organic frameworks(MOFs) consisting of metal ions or clusters connected by a medium-strength coordination bond with organic ligands are a new class of organic-inorganic hybrids. Large surface area, high adsorption affinity, diverse structures and pore topologies, accessible functionalization of tunnels make them attract tremendous attention in catalysis. In recent years, quantities of carbon nanomaterials and metal nanoparticles/carbon composites derived from MOFs used in electrochemical catalysis showed superior catalytic properties in the electrochemical catalysis. For the preparation of the MOFs derivatives with different catalytic functions and high efficiency, it was necessary to focus on the influence of the properties of MOFs materials(structure, doped heteroatoms, etc.) and heat treatment conditions(activation atmosphere, temperature, time, and heating gradient, etc.) on the performance of catalysts.Hence, the preparation of MOFs derivatives and their application in ORR, HER were introduced according to different metal dopants for better design of efficient electrochemical catalysts. At last, an outlook for future research in the field of catalysis with MOFs derivatives was given.
引文
[1] Batten S R, Champness N R, Chen X M, Javier García-Martínez J, Kitagawa S, ?hrstr?m L, Keeffe M O, Suh M P, Reedijk J. Terminology of metal-organic frameworks and coordinationpolymers (IUPAC Recommendations 2013) [J]. Pure and Applied Chemistry, 2013, 85(8): 1715.
    [2] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O′Keeffe M, Yaghi O M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage [J]. Science, 2002, 295(5554): 469.
    [3] Wang B, Cote A P, Furukawa H, O′Keeffe M, Yaghi O M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs [J]. Nature, 2008, 453(7192): 207.
    [4] Phan A, Doonan C J, Uriberomo F J, Knobler C B, O′Keeffe M, Yaghi O M. Synthesis, structureand carbon dioxide capture properties of zeolitic imidazolate frameworks [J]. Accounts of Chemical Research, 2010, 43(1): 58.
    [5] Tanaka D, Nakagawa K, Higuchi M, Horike S, Kubota Y, Kobayashi T C, Takata M, Kitagawa S. Kinetic gate-opening process in a flexible porous coordination polymer [J]. Angewandte Chemie, 2008, 47(21): 3978.
    [6] Serre C, Millange F, Thouvenot C, Nogues M, Marsolier G, Louer D, Ferey G. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or Cr(III)(OH)x[O(2)C-C(6)H(4)-CO(2)]x[HO(2)C-C(6)H(4)-CO(2)H](x)xH(2)O(y) [J]. Journal of the American Chemical Society, 2002, 124(45): 13519.
    [7] Ma S, Sun D, Simmons J M, Collier C D, Yuan D, Zhou H C. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methaneuptake [J]. Journal of the American Chemical Society, 2008, 130(3): 1012.
    [8] Cavka J H, Jakobsen S, Olsbye U, Guilou N, Lamberti C, Bordiga S, Lillerud K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J]. Journal ofthe American Chemical Society, 2008, 130(42): 13850.
    [9] Gascon J, Corma A, Kapteijn F, Xamena F X L I. Metal organic framework catalysis: quo vadis? [J]. Acs Catalysis, 2014, 4(4): 361.
    [10] Wang H, Zhu Q L, Zou R, Xu Q. Metal-organic frameworks for energy applications [J]. Chemistry, 2017, 2(1): 52.
    [11] Zhang C, Qi H Z, Sun J, Wang H. Catalytic application of metal organic material (MOFs) [J]. Chinese Journal of Nature, 2016, 38(5): 355.(张辰, 戚焕震, 孙俭, 王慧. 金属有机架构材料(MOFs)的催化应用 [J]. 自然杂志, 2016, 38(5): 355.)
    [12] Oararteta L, Wezendonl T, Sun X, Kapteijn F, Gascon J. Metal organic frameworks as precursors for the manufacture of advanced catalytic materials [J]. Materials Chemistry Frontiers, 2017(18).
    [13] Cao Y, Wei Z, He J, Zang J, Zhang Q, Zheng M. α-MnO2 nanorods grown in situ on graphene as catalysts for Li-O2 batteries with excellent electrochemical performance [J]. Energy & Environmental Science, 2012, 5(12): 9765.
    [14] Rabis A, Rodriguez P, Schmidt T J. Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges [J]. Acs Catalysis, 2012, 2(5): 864.
    [15] Li Z, Zeng R, Jiang L J. Pt-based core-shell catalyst for proton exchange membrane fuel cell [J]. Chinese Journal of Rare Metals, 2017, 41(8): 925.(李治应, 曾蓉, 蒋利军. Pt基核壳结构质子交换膜燃料电池氧还原催化剂研究进展 [J]. 稀有金属, 2017, 41(8): 925.)
    [16] Wang Y J, Zhao N, Fang B, Li H, Bi X T, Wang H. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape and composition manipulation and their impact to activity [J]. Chemical Reviews, 2015, 115(9): 3433.
    [17] Chen Z, Higgins D, Yu A, Zhang L, Zhang J. A review on non-precious metal electrocatalysts for PEM fuel cells [J]. Energy & Environmental Science, 2011, 4(9): 3167.
    [18] Yang H, Bradley S J, Chan A, Waterhouse G I N, Nann T, Kruger PE, Telfer S G. Catalytically active bimetallic nanoparticles supported on porous carbon capsules derived frommetal-organic framework composites [J]. Journal of the American Chemical Society, 2016, 38(36): 11872.
    [19] Zhang L, Su Z, Jiang F, Yang L, Qian J, Zhou Y, Li W, Hong M. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions [J]. Nanoscale, 2014, 6(12): 6590.
    [20] Wang S, Wang X, Li X, Huo J. Nonporous MOF-derived dopant-free mesoporous carbon as efficient metal-free electrocatalysts for oxygen reduction reaction [J]. Journal of Materials Chemistry A, 2016, 4(24): 9370.
    [21] Aijaz A, Fujiwara N, Xu Q. From metal-organic framework to nitrogen-decorated nanoporous carbons: high CO2 uptake and efficient catalytic oxygen reduction [J]. Journal of the American Chemical Society, 2014, 136(19): 6790.
    [22] Zhang W, Wu Z Y, Jiang H L, Yu S H. Nanowire-directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis [J]. Journal of the American Chemical Society, 2014, 136(41): 14385.
    [23] Qian Y, Hu Z, Ge X, Yang S, Peng Y, Kang Z, Liu Z, Lee J Y, Zhao D. A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries [J]. Carbon, 2016, 111: 641.
    [24] Fu Y, Huang Y, Xiang Z, Liu G, Cao D. Phosphorous-nitrogen-codoped carbon materials derived from metal-organic frameworks as efficient electrocatalysts for oxygen reduction reactions [J]. European Journal of Inorganic Chemistry, 2016, 2016(13/14): 2100.
    [25] Sa Y J, Seo D J, Woo J, Lim J T, Cheon J Y, Yang S Y, Lee J M, Kang D, Shin T J, Shin H S, Jeong H Y, Kim C S, Kim T Y, Joo S H. A general approach to preferential formation of active Fe-Nx sites in Fe-N/C electrocatalysts for efficient oxygen reduction reaction [J]. Journal of the American Chemical Society, 2016, 138(45): 15046.
    [26] Zheng Y, Jiao Y, Zhu Y, Cai Q, Vasileff A, Li L H, Han Y, Chen Y, Qian S Z. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions [J]. Journal of the American Chemical Society, 2017, 139(9): 3336.
    [27] Ma S, Goenaga G A, Call A V, Liu D J. Cobalt imidazolate framework as precursor for oxygen reductionreaction electrocatalysts [J]. Chemistry-A European Journal, 2011, 17(7): 2063.
    [28] Jaouen F, Herranz J, Lefevre M, Dodelet J P, Kramm U I, Herrmann I, Bogdanoff P, Maruyama J, Nagaoka T, Garsuch A, Dahn J R, Olson T, Pylypenko S, Atanassov P, Ustinov E A. Cross-laboratory experimental study of non-noble-metal electrocatalystsfor the oxygen reduction reaction [J]. ACSApplied Materials & Interfaces, 2009, 1(8): 1623.
    [29] Xia W, Zhu J, Guo W, An L, Xia D, Zou R. Well defined carbon polyhedrons prepared from nano metal-organic frameworks for oxygen reduction [J]. Journal of Materials Chemistry A, 2014, 2(30): 11606.
    [30] Wang X, Zhou J, Fu H, Li W, Fan X, Xin G, Zheng J, Li X. MOF derived catalysts for electrochemical oxygen reduction [J]. Journal of Materials Chemistry A, 2014, 2(34): 14064.
    [31] Kong A, Mao C, Lin Q, Wei X, Bu X, Feng P. From cage-in-cage MOF to N-doped and Co-nanoparticle-embedded carbon for oxygen reduction reaction [J]. Dalton Transactions, 2015, 44(15): 6748.
    [32] Proietti E, Jaouen F, Lefevre M, Larouche N, Tian J, Herranz J, Dodelet J P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells [J]. Nature Communication, 2011, 2(2): 416.
    [33] Morozan A, Sougrati M T, Goellner V, Jones D, Stievano L, Jaouen F. Effect of furfuryl alcohol on metal organicframework-based Fe/N/C electrocatalysts for polymer electrolyte membrane fuel cells [J]. Electrochimica Acta, 2014, 119(2): 192.
    [34] Zhang G, Chenitz R, Lefevre M, Sun S, Dodelet J P. Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygenat the cathode of PEM fuel cells? [J].Nano Energy, 2016, 29: 111.
    [35] Luo Y, Estudillo-Wong LA, CavilloL, Granozzi G, Alonso-Vante N. An easy and cheap chemical route using a MOF precursor to prepare Pd-Cuelectrocatalyst for efficient energy conversion cathodes [J]. Journal of Catalysis, 2016, 338: 135.
    [36] Zhang P, Sun F, Xiang Z, Shen Z, Yun J, Cao D. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction [J]. Energy & Environmental Science, 2013, 7(1): 442.
    [37] Ge L, Yang Y, Wang L, Zhou W, Marco R D, Chen Z, Zou J, Zhu Z. High activity electrocatalysts from metal-organic framework-carbon nanotube templates for the oxygen reductionreaction [J]. Carbon, 2015, 82(C): 417.
    [38] Khan I A, Badshah A, Haider N, Ullah S, Anjum D H, Nadeem M A. Porous carbon as electrode material in direct ethanol fuel cells(DEFCs) synthesized by the direct carbonization of MOF-5 [J]. Journal of Solid State Electrochemistry, 2014, 18(6): 1545.
    [39] You B, Jiang N, Sheng M, Drisdell W S, Yano J, Sun Y. Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction [J]. ACS Catalysis, 2015, 5(12): 7068.
    [40] Wang X, Fan X, Lin H, Fu H, Wang T, Zheng J, Li X. An efficient Co-N-C oxygen reduction catalyst with highly dispersed Co sites derivedfrom a ZnCo bimetallic zeoliticimidazolate framework [J]. RSC Advances, 2016, 6(44): 37965.
    [41] Lu J, Zhou W, Wang L, Jia J, Ke Y, Yang L, Zhou K, Liu X, Tang Z, Li L, Chen S. Core-shell nanocomposites based on gold nanoparticle@zinc-iron-embedded porous carbons derived from Metal-organic frameworks as efficient dual catalysts for oxygen reduction and hydrogen evolution reactions [J]. ACS Catalysis, 2016, 6(2): 1045.
    [42] Wu Z F, Tan B, Ma W, Xiong W W, Xie Z L, Huang X Y. Mg2+ incorporated Co-based MOF precursors for hierarchical CNTs-containing porous carbons with ORR activity [J]. Dalton Transactions, 2018, 47: 2810.
    [43] Wen F Y, Yang J H, Zong X, Ma Y, Xu Q, Ma B J, Li C. Research progress in hydrogen production by solar energy [J]. Progress In Chemistry, 2009, 21(11): 2285.(温福宇, 杨金辉, 宗旭, 马艺, 徐倩, 马保军, 李灿. 太阳能光催化制氢研究进展 [J]. 化学进展, 2009, 21(11): 2285.)
    [44] Chu M, Li X, Li N, Hou M J, Li X Z, Dong Y Z, Wang L. Improved electrocatalytic hydrogen-evolution performance of metal-organic framework MOF(Ni)-74 by using grapheme oxide decorations [J]. Material Review, 2018, 32(9): 1417.(褚梅, 李曦, 李娜, 侯美静, 李小争, 董永志, 王璐. 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能 [J]. 材料导报, 2018, 32(9): 1417.)
    [45] Raoof J B, Hosseini S R, Ojani R, Mandegarzad S. MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction [J]. Energy, 2015, 90(4): 1075.
    [46] Mandegarzad S, Raoof J B, Hosseini S R, Ojani R. MOF-derived Cu-Pd/nanoporous carbon composite as an efficient catalyst for hydrogenevolution reaction: a comparison between hydrothermal and electrochemical synthesis [J]. Applied Surface Science, 2018, 436: 451.
    [47] Wang C, Su Y, Zhao X, Tong S, Han X. MoS2@HKUST-1 flower-like nanohybrids for efficient hydrogen evolution reaction [J]. Chemistry-A European Journal, 2018, 24(5): 1080.
    [48] Wang R, Dong X Y, Du J, Zhao J Y, Zang S Q. MOF-derived bifunctional Cu3P nanoparticles coated by a N,P-codoped carbon shell for hydrogen evolution and oxygen reduction [J]. Advanced Materials, 2017, 30(6).
    [49] Wang T, Zhou Q, Wang X, Zheng J, Li X. MOF-derived surface modified Ni nanoparticles as an efficient catalyst for the hydrogen evolution reaction [J]. Journalof Materials Chemistry A, 2015, 3(32): 16435.
    [50] Xu X, Nosheen F, Wang X. Ni-decorated molybdenum carbide hollow structure derived from carbon-coated metal-organic framework forelectrocatalytic hydrogen evolution reaction [J]. Chemistry of Materials, 2016, 28(17): 6313.
    [51] Li L, Li X, Ai L, Jiang J. MOF-derived nanostructured cobalt phosphide assemblies for efficient hydrogen evolution reaction [J]. RSC Advances, 2015, 5(110): 90265.
    [52] Hao J, Yang W, Zhang Z, Tang J. Metal-organic frameworks derived CoxFe1-xP nanocubes for electrochemical hydrogen evolution [J]. Nanoscale, 2015, 7(25): 11055.
    [53] Dai X, Liu M, Li Z, Jin A, Ma Y, Huang X, Sun H, Wang H, Zhang X. Molybdenum polysulfide anchored on porous Zr-metal organic framework to enhance the performance of hydrogen evolution reaction [J]. Journal of Physical Chemistry C, 2016, 120(23): 12539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700