用户名: 密码: 验证码:
石墨烯量子点在储能器件中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Graphene Quantum Dots in Energy Storage Devices
  • 作者:龚乐 ; 杨蓉 ; 刘瑞 ; 陈利萍 ; 燕映霖 ; 冯祖飞
  • 英文作者:Le Gong;Rong Yang;Rui Liu;Liping Chen;Yinglin Yan;Zufei Feng;School of Science, Xi'an University of Technology;School of Materials Science and Engineering, Xi'an University of Technology;
  • 关键词:石墨烯量子点 ; 异原子掺杂 ; 复合材料 ; 储能器件
  • 英文关键词:graphene quantum dots(GQDs);;heteroatoms-doped;;composites;;energy storage devices
  • 中文刊名:HXJZ
  • 英文刊名:Progress in Chemistry
  • 机构:西安理工大学理学院;西安理工大学材料科学与工程学院;
  • 出版日期:2019-07-24
  • 出版单位:化学进展
  • 年:2019
  • 期:v.31;No.231
  • 基金:国家国际科技合作专项(No.2015DFR50350);; 国家自然科学基金青年基金项目(No.51702256);; 陕西省科技计划项目(No.2017GY-160);; 陕西省科技厅“创新人才推进计划-科技创新团队”项目(No.2019TD-019)资助~~
  • 语种:中文;
  • 页:HXJZ201907008
  • 页数:11
  • CN:07
  • ISSN:11-3383/O6
  • 分类号:100-110
摘要
石墨烯量子点(GQDs)作为新型碳基材料,由于其纳米级小尺寸而具有比表面积大、导电性高、透明性好、荧光性能独特等优点,是一种极具潜力的储能器件电极材料。GQDs与金属化合物、碳材料等形成具有三维空间结构的复合材料,有利于电子扩散和离子传输,大幅度改善GQDs作为电极材料的实际应用性能。异原子掺杂型GQDs可提供较多活性位点,提高活性物质利用率。本文介绍了GQDs的合成策略,主要分为自上而下和自下而上法。不同制备方法对GQDs的粒径大小、表面缺陷位点和荧光特性等的影响也不尽相同。通过阐述近几年GQDs、掺杂型GQDs及其复合物在超级电容器、锂离子电池、太阳能电池等能源器件方面的应用实例,表明具有量子限域效应和边界效应的GQDs基材料在新型储能器件中有巨大的应用潜力;通过深层剖析GQDs复合物的空间结构对储能器件电化学性能的影响,为今后深入研究奠定基础。此外,指出未来GQDs的发展方向是寻找快速、绿色环保的大批量合成方法,均匀、有效的掺杂或复合以及构建独特空间结构的电极材料,进一步提高其应用于储能器件时的电化学性能。
        In term of new carbon-based material, graphene quantum dots(GQDs) are a boundless promising electrode material for energy storage devices due to their excellent properties of large specific surface area, high conductivity, excellent transparency and unique fluorescence characteristics. GQDs form composites with metal compounds or carbon material to construct three-dimensional spatial structures, which is conductive to electron diffusion and ion transport, greatly improving the practical application performance of GQDs as electrode materials. Furthermore, heteroatoms-doped GQDs can provide more active sites and enhance the utilization of active substance. Herein, The synthesis strategies of GQDs, which are mainly classified into top-down and bottom-up methods,are briefly introduced. The effects of various preparation methods on the particle size, surface defect sites and fluorescence characteristics of GQDs are also distinct. The applications of GQDs, doped GQDs and their composites in energy storage devices such as supercapacitors, lithium ion batteries, solar cells and fuel cells in recent years, it is obvious that GQDs-based electrode materials with quantum confinement effect and boundary effect have great potential for new energy storage devices. The influence of distinctive space structure on electrochemical properties are analyzed. In addition, it is pointed out that the future development of GQDs is to find a rapid, green and environmentally-friendly method for mass synthesis of GQDs, uniform and effective doping or compounding and constructing a unique spatial structure of electrode materials, which can further improve the electrochemical performance in the applications of energy storage devices.
引文
[1] Novoselov K S,Geim A K,Morozov S V,Jiang D,Zhang Y,Dubonos S V,Grigorieva V,Firsov A A.Science,2004,306(5696):666.
    [2] Wang H B,Maiyalagan T,Wang X.ACS Catal.,2012,2(5):781.
    [3] Allen M J,Tuang V C,Kaner R B.Chem.Rev.,2010,110(1):132.
    [4] Rossetti R,Nakahara S,Brus L E.J.Chem.Phys.,1983,79(2):1086.
    [5] Halperin B I.Sci.Am.,1986,254(4):52.
    [6] Bacon M,Bradley S J,Nann T.Part.Part.Syst.Char.,2014,31(4):415.
    [7] Jin Z H,Owour P,Lei S D,Ge L H.Curr.Opin.Colloid.Interface Sci.,2015,20(5):439.
    [8] Tian P,Tang L,Teng K S,Lau S P.Materials Today Chemistry,2018,10:221.
    [9] Kuo W S,Chen H H,Chen S Y,Chang C Y,Chen P C,Hou Y I,Shao Y T,Kao H F,Hsu C L L,Chen S J,Wu S R,Wang J Y.Biomaterials,2017,120:185.
    [10] Fang B Y,Li C,Song Y Y,Tan F,Cao Y C,Zhao Y D.Biosens.Bioelectron.,2018,100:41.
    [11] Abbas A,Mariana L T,Phan A N.Carbon,2018,140:77.
    [12] Bak S,Kim D,Lee H.Current Applied Physics,2016,16:1192.
    [13] Park J J,Moon J,Kim C,Kang J H,Lim E,Park J,Lee K J,Yu S H,Seo J H,Lee J,Heo J,Tanaka N,Cho S P,Pyun J,Cabana J,Hong B H,Sung Y E.NPG Asia Materials,2016,8(5):272.
    [14] Kong L J,Yang Y Q,Li R Y,Li Z J.Electrochim.Acta,2016,198:144.
    [15] Pan D Y,Zhang J C,Li Z,Wu M H.Adv.Mater.,2010,22(6):734.
    [16] Ahmed B,Kumar S,Oiha A K,Hirsch F,Riese S,Fischer I.J.Photoch.Photobio.A,2018,364:671.
    [17] Ahirwar S,Mallick S,Bahadur D.ACS Omega,2017,2:83843.
    [18] Huang H G,Yang S W,Li Q T,Yang Y C,Wang G,You X F,Mao B H,Wang H S,Ma Y,He P,Liu Z,Ding G Q,Xie X M.Langmuir,2018,34(1):250.
    [19] Yu J J,Liu S Y,Chen S,Wang T H.Ind.Eng.Chem.Res.,2017,56:10028.
    [20] Shin Y H,Park J,Hyun D,Yang J,Lee J H,Kim J H,Lee H.Nanoscale,2015,7(13):5633.
    [21] Liu B T,Peng L L,Chen W B,Wang J,Han T,Mo Q H.Nanosci.Nanotechnol.Lett.,2017,9(3):297.
    [22] Kumar S,Ojha A K,Ahmed B,Kumar A,Das J,Materny A.Materials Today Communications,2017,11:76.
    [23] Dong Y Q,Shao J W,Chen C Q,Li H,Wang R X,Chi Y W,Lin X M,Chen G N.Carbon,2012,50(12):4738.
    [24] Yan X,Cui X,Li L S.J.Am.Chem.Soc.,2010,132(17):5944.
    [25] Xu C,Yang S W,Tian L F,Guo T Q,Ding G Q,Zhao J W,Sun J,Lu J,Wang Z Y.Appl.Phys.Express,2017,10(3):032102.
    [26] Lu L Q,Zhu Y C,Shi C,Pei Y T.Carbon,2016,109:373.
    [27] Li H T,He X D,Liu Y,Huang H,Lian S Y,Lee S T,Kang Z H.Carbon,2011,49(2):605.
    [28] Umrao S,Jang M H,Oh J H,Kim G,Sahoo S,Cho Y H,Srivastva A,Oh I K.Carbon,2015,81:514.
    [29] Tang L B,Ji R B,Cao X K,Lin J Y,Jiang H X,Li X M,Teng K S,Lu M C,Zeng S J,Hao J H,Lua S P.ACS Nano,2012,6(6):5102.
    [30] Wang L,Wang Y L,Xu T,Liao H B,Yao C J,Liu Y,Li Z,Chen Z W,Pan D Y,Sun L T,Wu M H.Nature Communications,2014,5:5357.
    [31] Xia X H,Tu J P,Zhang Y Q,Wang X L,Gu C D,Zhao X B,Fan H L.ACS Nano,2012,6(6):5531.
    [32] Zhang L J,Xia G L,Guo Z P,Li X G,Sun D L,Yu X B.Int.J.Hydrogen Energ.,2016,41:14252.
    [33] 李巧乐(Li Q L),燕映霖(Yan Y L),杨蓉(Yang R),陈利萍(Chen L P),任冰(Ren B),许云华(Xu Y H).化工进展(Chemical Industry and Engineering Progress),2017,36(9):3353.
    [34] Raza W,Ali F,Raza N,Luo Y,Kim K H,Yang J H,Kumar S,Mehmood A,Kwon E.Nano Energy,2018,52:441.
    [35] Wu Y G,Liu Z,Ran F.Micropor.Mesopor.Mater.,2019,275:14.
    [36] Aken M L V,Maleski K,Mathis T S,Breslin J P.ECS J.Solid.State.Sc.,2017,6(6):3103.
    [37] Huang Y Y,Shi T L,Zhong Y,Cheng S Y,Jiang S L,Chen C,Liao G L,Tang Z R.Electrochim Acta,2018,269:45.
    [38] Liu W W,Feng Y Q,Yan B X,Chen J T,Xue Q J.Adv.Funct.Mater.,2013,23:4111.
    [39] Huang Y Y,Lin L W,Shi T L,Cheng S Y,Zhong Y,Chen C,Tang Z R.Applied Surface Science,2019,463:498.
    [40] Hu Y,Zhao Y,Lu G W,Chen N,Zhang Z P,Li H.Nanotechnology,2013,24:195401.
    [41] Lee K,Lee H,Shin Y,Yoon Y,Kim D,Lee H.Nano Energy,2016,26:746.
    [42] Ganganboina A B,Chowdhury A D,Doong R A.ACS Sustainable Chem.Eng.,2017,5:4930.
    [43] Islam M S,Deng Y,Tong L Y,Roy A K,Faisal S N,Hassan M,Minett A I,Gomes V G.Materials Today Communications,2017,10:112.
    [44] Li Z,Liu X,Wang L,Bu F,Wei J J,Pan D Y,Wu M H.Small,2018,8:21460.
    [45] Kuar M,Kuar M,Sharma V K.Adv.Colloid.Interfac.,2018,259:44.
    [46] Li Z,Cao L,Qin P,Liu X,Chen Z W,Wang L,Pan D Y.Carbon,2018,139:67.
    [47] Ganganboina A B,Chowdhury A D,Doong R A.Electrochim.Acta,2017,245:912.
    [48] Li Z,Li Y F,Wang L,Cao L,Liu X,Chen Z W,Pan D Y,Wu M H.Electrochim.Acta,2017,235:561.
    [49] Sun C W,Liu L,Gong Y D,Wilkinson D P,Zhang J J.Nano Energy,2017,33:363.
    [50] Zhu C R,Chao D L,Sun J,Bacho M,Fan Z X,Ng C F,Xia X H,Huang H,Zhang H,Shen Z X,Ding G Q,Fan H J.Adv.Mater.Interfaces,2015,2(2):1400499.
    [51] Chao D L,Zhu C R,Xia X H,Liu J L,Zhang X,Wang J,Liang P.Nano Lett.,2015,15:565.
    [52] Ji Y C,Hu J,Biskupek J,Kaiser U,Song Y F,Streb C.Chem.Eur.J.,2017,23:16637.
    [53] Kundu S,Ragupathy P,Pillai V K.J.Electrochem.Soc.,2016,163(6):A1112.
    [54] Li R Y,Jiang Y Y,Zhou X Y,Li Z J,Gu Z G,Wang G L.Electrochim.Acta,2015,178:303.
    [55] Zhu X Q,Li J,Liu P,Feng C,Ali R N,Xiang B.Appl.Phys.A-Mater.,2018,124:722.
    [56] 邓南平(Deng N P),马晓敏(Ma X M),阮艳莉(Ruan Y L),王晓清(Wang X Q),康卫民(Kang W M),程博闻(Cheng B W).化学进展(Progress in Chemistry),2016,28(9):1435.
    [57] Zhang L L,Wang Y J,Niu Z Q,Chen J.Carbon,2019,414:400.
    [58] Assadi M K,Bakhoda S,Saidur R,Hanaei H.Renew.Sust.Energ.Rev.,2018,81:2812.
    [59] Wang G Q,Dong W N,Ma P,Yan C,Zhang W,Liu L Q.Electrochim.Acta,2018,290:273.
    [60] Subramanian A,Pan Z H,Rong G L,Li H F,Qiu Y C,Xu Y J,Hou Y,Zheng Z Z,Zhang Y G.J.Power Sources,2017,343:39.
    [61] Yu C,Liu Z Q,Chen Y W,Meng X T,Li M Y,Qiu J S.Sci.China Mater.,2016,59(2):104.
    [62] Ding Z C,Hao Z,Meng B,Xie Z Y,Liu J,Dai L M.Nano Energy,2015,15:186.
    [63] Moon B J,Jang D,Yi Y,Lee H,Kim S J,Oh Y L,Lee S H,Park M,Lee S,Bae S.Nano Energy,2017,34:36.
    [64] Gao P,Ding K,Wang Y,Ruan K Q,Diao S L,Zhang Q,Sun B Q.J.Phys.Chem.C,2014,118:5164.
    [65] Diao S L,Zhang X J,Shao Z B,Ding K,Jie J S,Zhang X H.Nano Energy,2017,31:359.
    [66] Shen D L,Zhang W F,Xie F Y,Li Y F,Abate A,Wei M D.J.Power Sources,2018,402:320.
    [67] 池滨(Chi B),侯三英(Hou S Y),刘广智(Liu G Z),廖世(Liao S).化学进展(Progress in Chemistry),2018,30(2/3):243.
    [68] Zhang L L,Chang Q W,Chen H M,Shao M S.Nano Energy,2016,29:198.
    [69] Li G,Yi Q F,Yang X K,Chen Y,Zhou X L,Xie G.Carbon,2018,140:557.
    [70] Vecchio C L,Sebastian D,Alegre C,Arico A S,Baglio V.J.Electroanal.Chem.,2017,808:464.
    [71] Shinde D B,Dhavale V M,Kurungot S,Pillal V K.Indian Academy of Sciences,2015,38(2):435.
    [72] Fei H L,Ye R Q,Ye G L,Gong Y L,Peng Z W,Fan X J,Samuel E L G,Aiayan P M,Tour J M.ACS Nano,2014,8(10):10837.
    [73] Yao Y,Guo Y S,Du W,Tong X Y,Zhang X.J.Mater.Sci-Mater.Electron.,2018,29(20):17695.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700