轨道综合作业对高速铁路有砟轨道几何不平顺改善效果
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of track comprehensive maintenance on geometry irregularity improvement of ballast track in high-speed railway
  • 作者:木东升 ; 周宇 ; 韩延彬 ; 郑晓峰 ; 邝迪峰
  • 英文作者:MU Dong-sheng;ZHOU Yu;HAN Yan-bin;ZHENG Xiao-feng;KUANG Di-feng;Key Laboratory of Road and Traffic Engineering of Ministry of Education,Tongji University;
  • 关键词:轨道工程 ; 高速铁路 ; 轨道综合作业 ; 有砟轨道 ; 几何不平顺 ; 大机作业 ; 轨道质量指数
  • 英文关键词:track engineering;;high-speed railway;;track comprehensive maintenance;;ballast track;;geometry irregularity;;large machinery work;;track quality index
  • 中文刊名:JYGC
  • 英文刊名:Journal of Traffic and Transportation Engineering
  • 机构:同济大学道路与交通工程教育部重点实验室;
  • 出版日期:2018-10-15
  • 出版单位:交通运输工程学报
  • 年:2018
  • 期:v.18;No.95
  • 基金:国家自然科学基金项目(51678445,51878661);; 道路与铁道工程安全保障省部共建教育部重点实验室开放课题(STKF201715)
  • 语种:中文;
  • 页:JYGC201805011
  • 页数:10
  • CN:05
  • ISSN:61-1369/U
  • 分类号:94-103
摘要
根据高速铁路有砟轨道综合作业前后的轨道几何状态检测数据,分析了以大机作业、人工精调和钢轨打磨为主的综合作业对高速铁路有砟轨道几何不平顺的改善情况。分析结果表明:大机作业、人工精调和钢轨打磨的综合作业可联合改善轨道几何不平顺,其中,大机作业对高低、水平、三角坑不平顺的改善率分别为20.95%、12.90%和13.16%,人工精调对高低、水平、三角坑和轨距不平顺的改善率分别为11.97%、5.56%、7.43%和6.12%,钢轨打磨对高低和轨向不平顺的改善率分别为4.85%和3.88%,轨道质量指数在大机作业、人工精调、钢轨打磨后的改善率分别为11.54%、6.91%和1.10%,因此,大机作业和人工精调对各个单项不平顺改善效果明显,大机作业的贡献最大,而人工精调可在一定程度上改善轨距不平顺,钢轨打磨对高低不平顺和轨向不平顺进一步改善,但对水平不平顺、轨距不平顺和三角坑不平顺等改善效果不明显;经过综合作业,单项不平顺与轨道质量指数均呈下降趋势,其中轨道质量指数、高低不平顺、水平不平顺、右轨向不平顺近似呈幂函数趋势降低,左轨向不平顺近似呈线性函数趋势降低,三角坑不平顺近似呈对数函数趋势降低,反映了大机作业对轨道几何状态改善程度高,人工精调、钢轨打磨进一步改善部分单项不平顺的情况。
        According to the track geometry inspection data captured before and after comprehensive maintenance of ballast track in a high-speed railway,the improvements in the geometric irregularity of comprehensive maintenance that consists of large machinery work,artificial fine adjustment,and rail grinding were analyzed.Analyses result shows that the large machinery work,artificial fine adjustment,and rail grinding can improve track geometric irregularity effectively.Among them,the improvement rates of large machinery work on track vertical,cross,and twist irregularities are 20.95%,12.90%,and 13.16%,respectively,the improvement rates of artificial fine adjustment on track vertical,cross,twist,and gaugeirregularities are 11.97%,5.56%,7.43%,and 6.12%,respectively,and the rail grinding can improve the track vertical and alignment irregularities by 4.85% and 3.88%,respectively.The track quality index(TQI)improves by 11.54%,6.91%,and 1.10%after large machinery work,artificial fine adjustment,and rail grinding,respectively.Large machinery work and artificial fine adjustment have obvious effects on the improvement of single irregularities.The contribution of large machinery work is the largest,whereas the artificial fine adjustment can improve the track gauge irregularity to a certain extent,and the rail grinding can further improve the track vertical irregularity and track alignment irregularity,but have no obvious effects on the track cross irregularity,track gauge irregularity,or track twist irregularity.Through the comprehensive maintenance,the single irregularity and TQI both decrease,in which the TQI,track vertical irregularity,track cross irregularity, and right track alignment irregularity decrease approximately as power functions,the left track alignment irregularity decreases approximately as a linear function,and the track twist irregularity decreases approximately as a logarithmic function.The geometrical state of the track irregularities improves effectively after large machinery work,and the artificial fine adjustment and rail grinding can further improve some single irregularities.
引文
[1]赵立宁.有砟轨道TQI关键参数对高速行车的影响研究[D].北京:北京交通大学,2015.ZHAO Li-ning.Study on the effect of TQI key parameters of ballasted track on high-speed train running state[D].Beijing:Beijing Jiaotong University,2015.(in Chinese)
    [2]张紫菱.基于轨道质量状态的高速铁路轨道维修周期的预测[D].北京:北京交通大学,2013.ZHANG Zi-ling.Prediction of high-speed railway track maintenance cycle based on track quality state[D].Beijing:Beijing Jiaotong University,2013.(in Chinese)
    [3]徐伟昌.大型养路机械捣固作业维修决策模型研究[J].铁道科学与工程学报,2016,13(1):152-157.XU Wei-chang.Maintenance decision model based on large machinery tamping work[J].Journal of Railway Science and Engineering,2016,13(1):152-157.(in Chinese)
    [4]刘畅.高速铁路有砟道床大型养路机械作业机理及工艺研究[D].北京:北京交通大学,2016.LIU Chang.Study on operation mechanism and technology of large-scale maintenance machine used in high-speed railway ballast bed[D].Beijing:Beijing Jiaotong University,2016.(in Chinese)
    [5]缪孝宏.大机作业原理及实践[J].高速铁路技术,2013,4(1):98-100.MIAO Xiao-hong.Operating principle and performance of large track maintenance machinery[J].High Speed Railway Technology,2013,4(1):98-100.(in Chinese)
    [6]杨德明.高速铁路线路轨道工务维修养护研究[D].成都:西南交通大学,2014.YANG De-ming.Research on high speed railway track maintenance[D].Chengdu:Southwest Jiaotong University,2014.(in Chinese)
    [7]胡传亮.运用层次分析法对大型养路机械综合维修质量的评价研究[D].北京:清华大学,2008.HU Chuan-liang.Evaluations of the quality of comprehensive maintenance on large track maintenance machinery by AHP[D].Beijing:Tsinghua University,2008.(in Chinese)
    [8]徐伟昌.大型养路机械捣固作业轨道质量评价指数研究[J].铁道建筑,2014(7):139-142.XU Wei-chang.Study on track quality evaluation index for tamping operation of large-type maintenance machine[J].Railway Engineering,2014(7):139-142.(in Chinese)
    [9]孙建锋,池茂儒,吴兴文,等.基于能量法的轮对蛇行运动稳定性[J].交通运输工程学报,2018,18(2):82-89.SUN Jian-feng,CHI Mao-ru,WU Xing-wen,et al.Hunting motion stability of wheelset based on energy method[J].Journal of Traffic and Transportation Engineering,2018,18(2):82-89.(in Chinese)
    [10] AUDLEY M,ANDREWS J D.The effects of tamping on railway track geometry degradation[J].Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit,2013,227(4):376-391.
    [11]张国全.降低高速铁路TQI指标相关分析[J].铁道建筑技术,2016(2):75-78.ZHANG Guo-quan.Correlation analysis on how to reduce the TQI index of high-speed railway[J].Railway Construction Technology,2016(2):75-78.(in Chinese)
    [12]陈勋.沪宁城际高速铁路轨道质量指数分布规律研究[J].铁道标准设计,2013(7):1-5.CHEN Xun.Research on distribution rule of track quality index of Shanghai-Nanjing Intercity High-speed Railway[J].Railway Standard Design,2013(7):1-5.(in Chinese)
    [13]毛帅.京九线亳州至阜北区段轨道质量指数TQI分析及预测研究[D].北京:中国铁道科学研究院,2014.MAO Shuai.Analysis and forecast of the Beijing Kowloon Line Bozhou to Fubei Section of track quality index[D].Beijing:China Academy of Railway Sciences,2014.(in Chinese)
    [14] LI M X D,BERGGREN E G,BERG M,et al.Assessing track geometry quality based on wavelength spectra and track-vehicle dynamic interaction[J]. Vehicle System Dynamics,2008,46(S1):261-276.
    [15] WOODWARD P K,EL KACIMI A,LAGHROUCHE O,et al.Application of polyurethane geocomposites to help maintain track geometry for high-speed ballasted railway tracks[J].Journal of Zhejiang University—Science A:Applied Physics and Engineering,2012,13(11):836-849.
    [16] IONESCU D.Evaluation of the engineering behaviour of railway ballast[D].Wollongong:University of Wollongong,2004.
    [17] NURMIKOLU A.Key aspects on the behaviour of the ballast and substructure of a modern railway track:researchbased practical observations in Finland[J].Journal of Zhejiang University—Science A:Applied Physics and Engineering,2012,13(11):825-835.
    [18] LICHTBERGER B W.Railway track optimisation by efficient track maintenance machinery and strategies[J].Rail Engineering International,2007,36(4):3-6.
    [19] MAGEL E E,KALOUSEK J.The application of contact mechanics to rail profile design and rail grinding[J].Wear,2002,253(1/2):308-316.
    [20] PERSSON I,NILSSON R,BIK U,et al.Use of a genetic algorithm to improve the rail profile on Stockholm underground[J].Vehicle System Dynamics,2010,48(S1):89-104.
    [21] ZAKHAROV S,GORYACHEVA I,BOGDANOV V,et al.Problems with wheel and rail profiles selection and optimization[J].Wear,2008,265(9/10):1266-1272.
    [22] CHOI H Y,LEE D H,SONG C Y,et al.Optimization of rail profile to reduce wear on curved track[J].International Journal of Precision Engineering and Manufacturing,2013,14(4):619-625.
    [23] TORSTENSSON P T,PIERINGER A,NIELSEN J C O.Simulation of rail roughness growth on small radius curves using a non-Hertzian and non-steady wheel-rail contact model[J].Wear,2014,314(1/2):241-253.
    [24] SHIMIZU A,IIDA T.Analyzing effect of profile change of top surface of 60kg rail upon vehicle dynamics[J].Quarterly Report of RTRI,2015,56(1):21-25.
    [25]吴清华.基于绝对坐标的轨道线路拟合整正方法研究[D].长沙:中南大学,2012.WU Qing-hua.A study of track line realignment method based on absolute coordinates[D].Changsha:Central South University,2012.(in Chinese)
    [26]蔡杰,应立军,周建.关于高精度轨道绝对坐标测量系统应用的探讨[J].企业技术开发,2009,28(3):61-62.CAI Jie,YING Li-jun,ZHOU Jian.Discussion on the application of high-precision railway absolute coordinate measure system[J].Technological Development of Enterprise,2009,28(3):61-62.(in Chinese)
    [27]金学松,杜星,郭俊,等.钢轨打磨技术研究进展[J].西南交通大学学报,2010,45(1):1-11.JIN Xue-song,DU Xing,GUO Jun,et al.State of arts of research on rail grinding[J].Journal of Southwest Jiaotong University,2010,45(1):1-11.(in Chinese)
    [28]刘月明,李建勇,蔡永林,等.钢轨打磨技术现状和发展趋势[J].中国铁道科学,2014,35(4):29-37.LIU Yue-ming,LI Jian-yong,CAI Yong-lin,et al.Current state and development trend of rail grinding technology[J].China Railway Science,2014,35(4):29-37.(in Chinese)
    [29] MEGEL E,RONEY M,KALOUSEK J.The blending of theory and practice in modern rail grinding[J].Fatigue and Fracture of Engineering Materials and Structures,2010,26(10):921-929.
    [30] GERLICI J,LACK T.Contact geometry influence on the rail/wheel surface stress distribution[J].Procedia Engineering,2010,2(1):2249-2257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700