基于导波频散特征的超声导波模态识别方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dispersion-based Mode Identification of Ultrasonic Guided Waves
  • 作者:伍文君 ; 章林柯 ; 王悦民
  • 英文作者:WU Wenjun;ZHANG Linke;WANG Yuemin;School of Energy and Power Engineering, Wuhan University of Technology;College of Power Engineering, Naval University of Engineering;
  • 关键词:超声导波 ; 频散 ; 匹配追踪 ; 模态识别
  • 英文关键词:ultrasonic guided wave;;dispersion;;matching pursuit;;mode identification
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:武汉理工大学能源与动力工程学院;海军工程大学动力工程学院;
  • 出版日期:2017-09-20
  • 出版单位:机械工程学报
  • 年:2017
  • 期:v.53
  • 基金:国家自然科学基金(51205404,51709216);; 国防预研基金(9140A27020115JB11001);; 湖北省自然科学基金(2016CKB700)资助项目
  • 语种:中文;
  • 页:JXXB201718002
  • 页数:8
  • CN:18
  • ISSN:11-2187/TH
  • 分类号:24-31
摘要
针对超声导波检测应用中模态识别难的问题,提出一种基于导波频散特征的模态识别方法。通过估计导波信号的频散量来识别导波模态,而导波的频散量与该模态导波波数在激励频率处的二次泰勒展开系数有关。根据导波信号的频散特点,构造带时间斜变的Chirplet匹配原子库,基于该Chirplet原子库,对导波信号进行匹配追踪分解,并算得该导波信号波数在激励频率处二次泰勒展开系数的最优估计值,再根据预先算得的各模态导波的波数-频率频散关系,区分导波信号的不同模态。数值模拟和试验验证都表明,该导波模态识别方法是准确且有效的。而该方法的不足之处是尚不能识别混叠严重的导波信号。研究结果有助于提高人们对复杂导波检测信号的解析能力,并推动导波检测技术的推广应用。
        Mode identification of ultrasonic guided waves, which is always encountered in guided wave inspections, is a difficult problem. A dispersion-based mode identification approach is introduced, which distinguishes guided wave modes by their degree of dispersion. The degree of dispersion of some mode is found related with the second coefficient of Taylor expansion of this mode's wave number at the excitation frequency. Based on this dispersion feature of guided waves, a Chirplet dictionary with the time shear is designed. And then the guided wave signals are analyzed with the matching pursuit method based on this Chirplet dictionary. The optimal estimation of the second coefficient of Taylor expansion of wave number can be obtained by the matching pursuit method, and combined with the wavenumber-frequency dispersion relation calculated in advance, the guided wave modes can be recognized. The numerical simulation and experimental verification all show that the proposed mode identification method is effectively and correctly. The deficiency of this method is that it still cannot distinguish the severely overlapped guided wave modes. The study results help to improve the interpretation of complicated guided wave inspection signals, and generalize the application of guided wave inspection.
引文
[1]ROSE J L.Ultrasonic waves in solid media[M].Cambriage:Cambriage University Press,1999.
    [2]何存富,吴斌,范晋伟.超声柱面导波技术及其应用研究进展[J].力学进展,2001,31(2):203-214.HE Cunfu,WU Bin,FAN Jinwei.Advances in ultrasonic cylindrical guided waves techniques and their applications[J].Advances in Mechanics,2001,31(2):203-214.
    [3]周邵萍,张蒲根,吕文超,等.基于导波的弯管裂纹缺陷的检测[J].机械工程学报,2015,51(6):58-65.ZHOU Shaoping,ZHANG Pugen,LüWenchao,et al.Detection of defects in elbow pipes using guided waves[J].Journal of Mechanical Engineering,2015,51(6):58-65.
    [4]SICARD R,GOYETTE J,ZELLOUF D.A numerical dispersion compensation technique for time recompression of Lamb wave signals[J].Ultrasonics,2002,40:727-732.
    [5]WILCOX P D.A rapid signal processing technique to remove the effect of dispersion from guided wave signals[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control.2003,50(4):419-427.
    [6]MARCHI L D,MARZANI A,CAPORALE S,et al.Ultrasonic guided-waves characterization with warped frequency transforms[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2009,56(10):2232-2240.
    [7]MARCHI L D,MARZANI A,SPECIALE N,et al.A passive monitoring technique based on dispersion compensation to locate impacts in plate-like structures[J].Smart Materials and Structures,2011,20:1-9.
    [8]LIU L,YUAN F G.A linear mapping technique for dispersion removal of Lamb waves[J].Structural Health Monitoring,2010,9(1):75-86.
    [9]KWUN H,BARTELS K A.Experimental observation of elastic-wave dispersion in bounded solids of various configurations[J].Journal of Acoustical Society of America,1999,99(2):962-968.
    [10]他得安,刘镇清.超声无损检测中的二维快速Fourier变换及Wigner-ville变换[J].无损检测,2001,7(23):313-316.TA Dean,LIU Zhenqing.Two-dimensional fast Fourier transform and Wigner-ville transform in ultrasonic nondestructive testing[J].NDT,2001,7(23):313-316.
    [11]BETTAYEB F,HACIANE S,AOUDIA S.Improving the time resolution and signal noise ratio of ultrasonic testing of welds by the wavelet packet[J].NDT&E International,2005,38:478-484.
    [12]MANN S,HAYKIN S.The chirplet transform:A generalization of Gabor’s logon transform[J].Vision Interface,1991,91:205-212.
    [13]HONG J C,SUN K H,KIM Y Y.Dispersion-based short-time Fourier transform applied to dispersive wave analysis[J].J.Acoust.Soc.Am.,2005,117(5):2949-2960.
    [14]KUTTIG H,NIETHAMMER M,HURLEBAUS S,et al.Model-based analysis of dispersion curves using chirplets[J].J.Acoust.Soc.Am.,2006,119(4):2122-2130.
    [15]KIM C Y,PARK K J.Mode separation and characterization of torsional guided wave signals reflected from defects using chirplet transform[J].NDT&E International,2015,74:15-23.
    [16]PENG Z,MENG G,CHU F,et al.Polynomial chirplet transform with application to instantaneous frequency estimation[J].IEEE Trans.Instrum.Meas.,2011,60:3222-3229.
    [17]YANG Y,PENG Z,MENG G,et al.Spline-kernelled chirplet transform for the analysis of signals with time-varying frequency and its application[J].IEEE Trans.Ind.Electron.,2012,59:1612-1621.
    [18]YANG Y,PENG Z K,ZHANG W M,et al.Frequency-varying group delay estimation using frequency domain polynomial chirplet transform[J].Mechanical Systems and Signal Processing,2014,46:146-162.
    [19]YANG Y,PENG Z K,ZHANG W M,et al.Dispersion analysis for broad band guided wave using generalized warblet transform[J].Journal of Sound and Vibration,2016,367:22-36.
    [20]MALLAT S G,ZHANG Z.Matching pursuits with time frequency dictionaries[J].IEEE transactions on Signal Processing,1993,41:3397-3415.
    [21]郑国军,唐志峰,王友钊,等.基于匹配追踪算法的超声导波管道轴向缺陷大小定量分析[J].机械工程学报.2013,49(4):1-5.ZHENG Guojun,TANG Zhifeng,WANG Youzhao,et al.Evaluation of pipe axial defeat through the use of ultrasonic guided wave and matching pursuit[J].Journal of Mechanical Engineering,2013,49(4):1-5.
    [22]ZHANG G M,ZHANG C Z,HARVEY D M.Sparse signal representation and its applications in ultrasonic NDE[J].Ultrasonics,2012,52:351-363.
    [23]HONG J,SUN K,KIM Y.The matching pursuit approach based on the modulated Gaussian pulse for efficient guided-wave damage inspection[J].Smart Mater.Struct.,2005,14:548-560.
    [24]TSE P,WANG X.Characterization of pipe line defect in guided-waves based inspection through matching pursuit with the optimized dictionary[J].NDT&E International,2013,54:171-182.
    [25]RAGHAVAN A,CESNIK C.Guided-wave signal processing using chirplet matching pursuits and mode correlation for structural health monitoring[J].Smart Mater.Struct.,2007,16:355-366.
    [26]HONG J,SUN K,KIM Y.Waveguide damage detection by the matching pursuit approach employing the dispersion-based Chirp functions[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2006,53(3):592-604.
    [27]HAYASHI T,TAMAYAMA C,MURASE M.Wave structure analysis of guided waves in a bar with an arbitrary cross-section[J].Ultrasonics,2006,44:17-24.
    [28]卢超,杨雪娟,戴翔,等.钢轨中导波传播模式的半解析有限元分析与试验测量[J].机械工程学报,2015,51(6):79-86.LU Chao,YANG Xuejuan,DAI Xiang,et al.Semi-analytical FEM Analysis and experimental measurement for propagating guided waves modes in rail[J].Journal of Mechanical Engineering,2015,51(6):79-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700