甘蔗渣显微结构对聚乳酸/甘蔗渣复合材料结构与性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Microstructure of Bagasse on Structure and Properties of Polylactic Acid/Bagasse Composites
  • 作者:洪浩群 ; 郭权南 ; 邱楚濠 ; 刘灏 ; 张海燕
  • 英文作者:HONG Haoqun;GUO Quannan;QIU Chuhao;LIU Hao;ZHANG Haiyan;School of Materials and Energy,Guangdong University of Technology;Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter,Guangdong University of Technology;
  • 关键词:生物质 ; 甘蔗渣 ; 表面改性 ; 偶联剂 ; 显微结构 ; 聚合物基复合材料
  • 英文关键词:biomass;;bagasse;;surface modification;;coupling agent;;microstructure;;polymer-matrix composites
  • 中文刊名:CLDB
  • 英文刊名:Materials Review
  • 机构:广东工业大学材料与能源学院;广东工业大学广东省功能软凝聚态物质重点实验室;
  • 出版日期:2018-05-25
  • 出版单位:材料导报
  • 年:2018
  • 期:v.32
  • 基金:国家自然科学基金(51276044);; 广东省科技计划项目(2014A010105047);; 广州市科技计划项目(201707010367)
  • 语种:中文;
  • 页:CLDB2018S1048
  • 页数:6
  • CN:S1
  • ISSN:50-1078/TB
  • 分类号:229-234
摘要
采用碱处理、硅烷偶联剂处理以及碱处理配合硅烷偶联剂处理等方式改性甘蔗渣(BF),采用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、热重分析(TGA)以及力学性能测试等研究改性后BF结构的变化。结果表明,不同改性方法均明显改变了BF的结构及改性剂的键合方式。碱处理能够去除BF中的半纤维素等小分子聚合物以及部分非晶区的纤维素,导致BF热稳定性降低,结晶度上升。碱液浓度偏高以及碱处理时间过长会导致BF的纤维表面原纤化,虽然能增加与偶联剂反应的面积,但BF的强度大大下降,不利于BF的增强作用。因此,硅烷偶联剂处理的BF/PLA复合材料的相容性及力学性能最佳,其次为碱处理配合硅烷偶联剂处理的BF/PLA复合材料,最后为碱处理的BF/PLA复合材料。
        Methods in terms of alkali treatment,silane coupling agent modification and combination of alkali treatment and silane coupling agent modification were used to modify bagasse fiber(BF).Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),thermogravimetry(TGA)and mechanical properties testing were used to characterize and analyze the structure and properties of modified BF.Results showed that the used methods changed the structure of BF and their bonding modes.Alkali treatment removed the small molecular compounds such as hemicellulose and parts of amorphous cellulose,resulting in the decreasing of thermal stability of BF and increasing of crystallinity of BF.The concentration of alkali solution was too high and the time for alkali treatment was so long that BF was fibrillated.The fibrillation of BF increased the reaction area of BF with the coupling agents,but decreased the strength of BF that is adverse to the reinforcement of BF.Therefore,BF/PLA composites modified by silane coupling agents demonstrated the best compatibility and mechanical properties,BF/PLA composites modified by combination of alkali treatment and silane coupling agents demonstrated better compatibility and mechanical properties,while BF/PLA composites modified by alkali treatment did not demonstrate good compatibility and mechanical properties in the compared BF/PLA composites.
引文
1 Faruk O,Bledzki A K,Fink H P,et al.Biocomposites reinforced with natural fibers:2000—2010[J].Progress in Polymer Science,2012,37(11):15526.
    2 赵盼盼,李丽萍.聚磷酸铵/次磷酸铝协效阻燃聚丙烯/木粉复合材料[J].材料导报:研究篇,2017,31(3):115.
    3 龚新怀,赵升云,陈良璧,等.茶生物质/聚丙烯复合材料的制备与性能研究[J].材料导报:研究篇,2016,30(12):48.
    4 Gurunathan T,Mohanty S,Nayak S K.A review of the recent developments in bio-composites based on natural fibres and their application perspectives[J].Composites Part A:Applied Science and Manufacturing,2015,77:1.
    5 牛志海,陈英红,白时兵.固相剪切碾磨制备高填充聚丙烯木塑复合材料的形貌结构与力学性能[J].化工学报,2014,65(12):5039.
    6 Li X,Tabil L G,Panigrahi S.Chemical treatments of natural fiber for use in natural fiber-reinforced composites:A review[J].Journal of Polymers and the Environment,2007,15(1):25.
    7 Xie Y J,Hill C A S,Xiao Z F,et al.Silane coupling agents used for natural fiber/polymer composites:A review[J].Composites Part A:Applied Science and Manufacturing,2010,41(7):806.
    8 Kalia S,Kaith B S,Kaur I.Pretreatments of natural fibers and their application as rein-forcing material in polymer composites—A review[J].Polymer Engineering&Science,2009,49(7):1253.
    9 John M J,Anandjiwala R D.Recent developments in chemical modification and characterization of natural fiber-reinforced composites[J].Polymer Composites,2008,29(2):187.
    10 Csikos A,Faludi G,Domjan A,et al.Modification of interfacial adhesion with a functionalized polymer in PLA/wood composites[J].European Polymer Journal,2015,68:592.
    11 盛雨峰,温变英,李晓媛,等.蔗渣纤维表面处理方法对蔗渣纤维/聚乳酸复合材料力学性能的影响[J].复合材料学报,2012,29(6):60.
    12 胡建鹏,郭明辉.木质素磺酸铵对聚乳酸/木纤维可生物降解复合材料力学与热性能的影响[J].复合材料学报,2015,32(3):657.
    13 Mulinari D R,Voorwald H J C,Cioffi M O H,et al.Surface modification of sugarcane bagasse cellulose and its effect on mechanical and water absorption properties of sugarcane bagasse cellulose/HDPE composites[J].BioResources,2010,5(2):661.
    14 Carvalho W S,Martins D F,Gomes F R,et al.Phosphate adsorption on chemically modified sugarcane bagasse fibres[J].Biomass and Bioenergy,2011,35(9):3913.
    15 Zhou F,Cheng G,Jiang B.Effect of silane treatment on microstructure of sisal fibers[J].Applied Surface Science,2014,292:806.
    16 Valadez G A,Cervantes U J M,Rolayo R,et al.Chemical modification of henequén fibers with an organosilane coupling agent[J].Composites Part B:Engineering,1999,30(3):321.
    17 Abdelmouleh M,Boufi S,Belgacem M N,et al.Modification of cellulosic fibres with functionalised silanes:Development of surface properties[J].International Journal of Adhesion and Adhesives,2004,24(1):43.
    18 Abdelmouleh M,Boufi S,Salah A,et al.Interaction of silane coupling agents with cellulose[J].Langmuir,2002,18(8):3203.
    19 Fiore V,Di Bella G,Valenza A.The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites[J].Composites Part B:Engineering,2015,68:14.
    20 Bocz K,Szolnoki B,Marosi A,et al.Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system[J].Polymer Degradation and Stability,2014,106:63.
    21 Reddy K O,Maheswari C U,Shukla M,et al.Tensile and structural characterization of alkali treated Borassus fruit fine fibers[J].Composites Part B:Engineering,2013,44(1):433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700