本征型自修复弹性体的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on Intrinsic Self-Healing Elastomer
  • 作者:张志菲 ; 赵树高 ; 杨琨
  • 英文作者:ZHANG Zhi-fei;ZHAO Shu-gao;YANG Kun;Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology;College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology;
  • 关键词:自修复 ; 弹性体 ; 本征型 ; 可逆化学
  • 英文关键词:self-healing;;elastomer;;intrinsic;;reversible chemistry
  • 中文刊名:GXHX
  • 英文刊名:Journal of Chemical Engineering of Chinese Universities
  • 机构:青岛科技大学橡塑材料与工程教育部重点实验室/山东省橡塑材料与工程重点实验室;天津科技大学化工与材料学院;
  • 出版日期:2018-08-15
  • 出版单位:高校化学工程学报
  • 年:2018
  • 期:v.32
  • 基金:国家自然科学基金(51403115);; 青岛科技大学橡塑材料与工程教育部重点实验室开放基金(KF2017008)
  • 语种:中文;
  • 页:GXHX201804003
  • 页数:9
  • CN:04
  • ISSN:33-1141/TQ
  • 分类号:26-34
摘要
弹性体材料在加工和使用过程中往往会受到环境或外加剪切应力作用,导致不可预期的损伤和结构破坏。通过自修复技术可有效延长材料的寿命,提高使用安全性,降低维修成本,同时实现材料的循环回收利用,降低材料失效带来的一系列安全和环境问题,因此对弹性体自修复性能的研究具有重要意义。目前自修复弹性体的研究主要分为两大类:外援型自修复和本征型自修复。其中,借助可逆化学实现的本征型自修复具有无需外加修复剂即可实现多次损伤修复的优点,近年来受到更多关注。文章主要介绍了自修复弹性体的研究现状,综述了最近几年基于可逆氢键、可逆离子键、可逆配位键等可逆非共价键,以及可逆Diels-Alder反应、可逆双硫键等可逆共价键设计和制备本征型自修复弹性体的研究成果,并对自修复弹性体的发展进行展望。
        Elastomer materials often suffer from environmental or shear stress during processing and usage, which may result in unexpected damage and failure. Self-repairing can extend the material lifetime, improve safety and help material recycling, which can reduce safety and environmental issues. Therefore, the development of self-healing elastomer is of great significance. Currently, there are two well-established strategies including extrinsic and intrinsic self-healing systems. Compared with extrinsic self-healing, intrinsic self-healing based on reversible chemistry is more attractive for its multiple reparability with no need of repairing agents. This review introduces current research progress of intrinsic self-healing elastomers, which are designed and prepared based on reversible non-covalent bonds and reversible covalent bonds including hydrogen bond, ionic bond, metal-ligand coordination chemistry, Diels-Alder reaction and disulfide-bond reaction. Challenges and future research opportunities are highlighted.
引文
[1]Schirrer R,Lenke R,Boudouaz J.Study of mechanical damage in rubber-toughened poly(methyl methacrylate)by single and multiple scattering of light[J].Polymer Engineering&Science,1997,37(10):1748-1760.
    [2]Fukumori K,Matsushita M,Okamoto H,et al.Recycling technology of tire rubber[J].JSAE Review,2002,23(2):259-264.
    [3]Myhre M,Saiwari S,Dierkes W,et al.Rubber recycling:chemistry,processing,and applications.Rubber chemistry and technology[J].Rubber Chemistry&Technology,2012,85(3):408-449.
    [4]Smith R F,Boothroyd S C,Thompson R L,et al.A facile route for rubber breakdown via cross metathesis reactions[J].Green Chemistry,2016,18(11):3448-3455.
    [5]Jones A S,Rule J D,Moore J S,et al.Life extension of self-healing polymers with rapidly growing fatigue cracks[J].Journal of the Royal Society Interface,2007,4(13):395-403.
    [6]Dry C.Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices[J].Smart Materials&Structures,1999,3(2):118-123.
    [7]Luo X F,Ou R,Eberly D E,et al.A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion[J].Acs Applied Materials&Interfaces,2009,1(3):612-620.
    [8]Rodriguez E D,Luo X F,Mather P T.Linear/network poly(ε-caprolactone)blends exhibiting shape memory assisted self-healing(SMASH)[J].Acs Applied Materials&Interfaces,2011,3(2):152-161.
    [9]Jr S J K,Oyetunji T C W Z.Self-healing of poly(ethylene-co-methacrylic acid)copolymers following projectile puncture[J].Mechanics of Advanced Materials&Structures,2007,14(5):391-397.
    [10]Jr K S,Ward T C.Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid)copolymers[J].Journal of the Royal Society Interface,2007,4(13):405-411.
    [11]Chen X X,Dam M A,Ono K,et al.A thermally re-mendable cross-linked polymeric material[J].Science,2002,295(5560):1698-1702.
    [12]Chen X X,Wudl F,Mal A K,et al.New thermally remendable highly cross-linked polymeric materials[J].Macromolecules,2003,36(6):1802-1807.
    [13]Peterson A M,Jensen R E,Palmese G R.Room-temperature healing of a thermosetting polymer using the diels-alder reaction[J].Acs Applied Materials&Interfaces,2010,2(4):1141-1149.
    [14]Tian Q,Rong M Z,Zhang M Q,et al.Synthesis and characterization of epoxy with improved thermal remendability based on Diels-Alder reaction[J].Polymer International,2010,59(10):1339-1345.
    [15]Tian Q,Yuan Y C,Rong M Z,et al.A thermally remendable epoxy resin[J].Journal of Materials Chemistry,2009,19(9):1289-1296.
    [16]Deng G H,Tang C M,Li F Y,et al.Covalent cross-linked polymer gels with reversible sol-gel transition and self-healing properties[J].Macromolecules,2010,43(3):1191-1194.
    [17]Wang X M,Bian G,Zhang M,et al.Self-healable hydrogels with cross-linking induced thermo-responsiveness and multi-triggered gel-sol-gel transition[J].Polymer Chemistry,2017,8(18):2872-2880.
    [18]Wei,C S,Chen M M,Liu D,et al.A recyclable disulfide bond chemical cross-linking high toughness,high conductivity ion gels based on re-shaping and restructuring in gel state[J].Polymer Chemistry,2015,6(22):4067-4070.
    [19]Guo R W,Su Q,Zhang J W,et al.Facile access to multi-sensitive and self-healing hydrogels with reversible and dynamic boronic ester and disulfide linkages[J].Biomacromolecules,2017,18(4):1356-1364.
    [20]White S R,Sottos N R,Geubelle P H,et al.Autonomic healing of polymer composites[J].Nature,2001,409(6822):794-797.
    [21]Loader C B,Hawyes V J.A smart repair system for polymer matrix composites[J].Composites Part A:Applied Science&Manufacturing,2001,32(12):1767-1776.
    [22]Hamilton A R,Sottos N R,White S R.Self-healing of internal damage in synthetic vascular materials[J].Advanced Materials,2010,22(45):5159-5163.
    [23]Toohey K S,Sottos N R,Lewis J A,et al.Self-healing materials with microvascular networks[J].Nature Materials,2007,6(8):581-585.
    [24]Hansen C J,Wu W,Toohey K S,et al.Self-healing materials with interpenetrating microvascular networks[J].Advanced Materials,2010,21(41):4143-4147.
    [25]Hamilton A R,Sottos N R,White S R.Self-healing of internal damage in synthetic vascular materials[J].Advanced Materials,2010,22(45):5159-5163.
    [26]Keller M W,White S R,Sottos N R.A self-healing poly(dimethyl siloxane)elastomer[J].Advanced Functional Materials,2007,17(14):2399-2404.
    [27]Keller M W,White S R,Sottos N R.Torsion fatigue response of self-healing poly(dimethylsiloxane)elastomers[J].Polymer,2008,49(13-14):3136-3145.
    [28]Patrick J F,Robb M J,Sottos N R,et al.Polymers with autonomous life-cycle control[J].Nature,2016,540(7633):363-370.
    [29]Balaban T S,Eichh?fer A,Lehn J.Self-assembly by hydrogen bonding andπ-πinteractions in the Crystal of a porphyrin-attempts to mimic bacteriochlorophyllc[J].European Journal of Organic Chemistry,2000,2000(21):4047-4057.
    [30]Procacci P.Thermodynamics of stacking interactions in proteins[J].Annual Reports Section"C"(Physical Chemistry),2011,107(19):242-262.
    [31]Burattini S,Greenland B W,Merino D H,et al.A healable supramolecular polymer blend based on aromaticπ-πstacking and hydrogen-bonding interactions[J].Journal of the American Chemical Society,2010,132(34):12051-12058.
    [32]Mei J F,Jia X Y,Lai J C,et al.A highly stretchable and autonomous self-healing polymer based on combination of pt·pt andπ-πinteractions[J].Macromolecular Rapid Communications,2016,37(20):1667-1675.
    [33]Cordier P,Tournilhac F,Soulié-Ziakovic C,et al.Self-healing and thermoreversible rubber from supramolecular assembly[J].Nature,2008,451(7181):977-980.
    [34]Sottos N R,Moore J S.Materials chemistry:spot-on healing[J].Nature,2011,472(7343):299-300.
    [35]Yount W C,Loveless D M,Craig S L.Strong means slow:dynamic contributions to the bulk mechanical properties of supramolecular networks[J].Angewandte Chemie,2005,44(18):2746-2748.
    [36]Chen Y L,Kushner A M,Williams G A,et al.Multiphase design of autonomic self-healing thermoplastic elastomers[J].Nature Chemistry,2012,4(6):467-472.
    [37]Hentschel J,Kushner A M,Ziller J,et al.Self-healing supramolecular block copolymers[J].Angewandte Chemie International Edition,2012,51(42):10713-10717.
    [38]Liu X H,Lu C H,Wu X D,et al.Self-healing strain sensors based on nanostructured supramolecular conductive elastomers[J].Journal of Materials Chemistry A,2017,5(20):9824-9832.
    [39]Cao J,Lu C H,Zhuang J,et al.Multiple hydrogen bonding enables the self-healing of sensors for human-machine interaction[J].Angewandte Chemie,2017,56(30):8795-8800.
    [40]Wu J R,Cai L H,Weitz D A.Tough self‐healing elastomers by molecular enforced integration of covalent and reversible networks[J].Advanced Materials,2017,29(38):1702616-1702616.
    [41]Rahman M A,Penco M,Peroni I,et al.Self-repairing systems based on ionomers and epoxidized natural rubber blends[J].ACS Applied Materials&Interfaces,2011,3(12):4865-4874.
    [42]Das A,Sallat A,Boehme F,et al.Ionic modification turns commercial rubber into a self-healing material[J].ACS Applied Materials&Interfaces,2015,7(37):20623-20630.
    [43]Le H H,Hait S,Das A,et al.Self-healing properties of carbon nanotube filled natural rubber/bromobutyl rubber blends[J].Express Polymer Letters,2017,11(3):230-242.
    [44]Nie Y J,Huang G S,Qu L L,et al.Cure kinetics and morphology of natural rubber reinforced by the in situ polymerization of zinc dimethacrylate[J].Journal of Applied Polymer Science,2010,115(1):99-106.
    [45]Xu C H,Cao L M,Lin B F,et al.Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization[J].ACS Applied Materials&Interfaces,2016,8(27):17728-17737.
    [46]Xu C H,Huang X H,Li C H,et al.Design of“Zn2+salt-bondings”cross-linked carboxylated styrene butadiene rubber with reprocessing and recycling ability via rearrangements of ionic cross-linkings[J].ACS Sustainable Chemistry&Engineering,2016,4(12):6981-6990.
    [47]Rodgers M T,Armentrout P B.Noncovalent metal-ligand bond energies as studied by threshold collision-induced dissociation[J].Mass Spectrometry Reviews,2000,19(4):215-247.
    [48]Burnworth M,Tang L,Kumpfer J R,et al.Optically healable supramolecular polymers[J].Nature,2011,472(7343):334-337.
    [49]Li C H,Wang C,Keplinger C,et al.A highly stretchable autonomous self-healing elastomer[J].Nature Chemistry,2016,8(6):618-624.
    [50]Xia N N,Xiong X M,Wang J H,et al.A seawater triggered dynamic coordinate bond and its application for underwater self-healing and reclaiming of lipophilic polymer[J].Chemical Science,2016,7(4):2736-2742.
    [51]Xia N N,Rong M M,Zhang M Q.Stabilization of catechol-boronic ester bonds for underwater self-healing and recycling of lipophilic bulk polymer in wider p H range[J].Journal of Materials Chemistry A,2016,4(37):14122-14131.
    [52]Han Y Y,Wu X D,Zhang X X,et al.Self-healing,highly sensitive electronic sensors enabled by metal-ligand coordination and hierarchical structure design[J].ACS Applied Materials&Interfaces,2017,9(23):20106-20114.
    [53]Kuang X,Liu G M,Dong X,et al.Enhancement of mechanical and self-healing performance in multiwall carbon nanotube/rubber composites via diels-alder bonding[J].Macromolecular Materials&Engineering,2016,301(5):535-541.
    [54]Jing B,Shi Z X.Dynamically crosslinked elastomer hybrids with light-induced rapid and efficient self-healing ability and reprogrammable shape memory behavior[J].ACS Applied Materials&Interfaces,2017,9(32):27213-27222.
    [55]Lu Y Y,Guan Z B.Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon double bonds[J].Journal of the American Chemical Society,2012,134(34):14226-14231.
    [56]Chujo Y,Sada K,Naka A,et al.Synthesis and redox gelation of disulfide-modified polyoxazoline[J].Macromolecules,1993,26(5):883-887.
    [57]Pepels M,Filot I,Klumperman B,et al.Self-healing systems based on disulfide-thiol exchange reactions[J].Polymer Chemistry,2013,4(18):4955-4965.
    [58]Lei Z Q,Xiang H P,Yuan Y J,et al.Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds[J].Chemistry of Materials,2014,26(6):2038-2046.
    [59]Xiang H P,Qian H J,Lu Z Y,et al.Crack healing and reclaiming of vulcanized rubber by triggering rearrangement of inherent sulfur crosslinked networks[J].Green Chemistry,2015,17(8):4315-4325.
    [60]Canadell J,Han G,Klumperman B.Self-healing materials based on disulfide links[J].Macromolecules,2011,44(8):2536-2541.
    [61]Rekondo A,Martin R,Ruizdeluzuriaga A,et al.Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis[J].Materials Horizons,2014,1(2):237-240.
    [62]Xiang H P,Rong M Z,Zhang M Q.Self-healing,reshaping,and recycling of vulcanized chloroprene rubber:a case study of multitask cyclic utilization of cross-linked polymer[J].ACS Sustainable Chemistry&Engineering,2016,4(5):2715-2724.
    [63]Xu W M,Rong M Z,Zhang M Q.Sunlight driven self-healing,reshaping and recycling of robust,transparent and yellowing-resistant polymer[J].Journal of Materials Chemistry A,2016,4(27):10683-10690.
    [64]Xiang H P,Rong M Z,Zhang M Q.A facile method for imparting sunlight driven catalyst-free self-healability and recyclability to commercial silicone elastomer[J].Polymer,2017,108:339-347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700