自愈防腐体系的愈合机制及应用的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in Research on Re-healing Mechanism and Application of Re-healing Anticorrosion System
  • 作者:张硕 ; 许萍 ; 张雅君 ; 汪长征 ; 韩芳
  • 英文作者:ZHANG Shuo;XU Ping;ZHANG Yajun;WANG Changzheng;HAN Fang;National Demonstration Center for Experimental Water Environment Education,Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education , Beijing University of Civil Engineering and Architecture;
  • 关键词:本征型自愈体系 ; 外援型自愈体系 ; 层层自组装 ; 微胶囊封装 ; 化学转化膜
  • 英文关键词:intrinsic re-healing;;extrinsic re-healing;;layer-by-layer self-assembly;;microcapsule packaging;;chemical conversion coating
  • 中文刊名:FSFJ
  • 英文刊名:Corrosion Science and Protection Technology
  • 机构:北京建筑大学城市雨水系统与水环境省部共建教育部重点实验室水环境国家级实验教学示范中心;
  • 出版日期:2019-01-15
  • 出版单位:腐蚀科学与防护技术
  • 年:2019
  • 期:v.31
  • 基金:国家自然科学基金(51578035);; 北京建筑大学研究生创新项目(PG2018043);北京建筑大学基金项目(00331615008);; 北京市属高校基本科研业务费专项资金;; 城市雨水系统和水环境省部共建教育部重点实验室项目(PXM2014014210000057)~~
  • 语种:中文;
  • 页:FSFJ201901014
  • 页数:9
  • CN:01
  • ISSN:21-1264/TQ
  • 分类号:94-102
摘要
综述了不同自愈体系的自愈机制,根据是否需要外加修复剂,将自愈体系分为本征型和外援型两类,其中本征型自愈体系的愈合机制是指非共价键(氢键作用、疏水作用、静电作用)和共价键(DA键、双硫键)的重新结合作用;外援型自愈体系是引入修复剂,利用修复剂修复损伤。最后,对自愈体系的主要的应用技术:层层自组装技术、微胶囊封装技术和化学转化膜技术进行了综述。
        The re-healing mechanism of different re-healing coating systems is reviewed. According to whether a restorative agent is added or not, the re-healing coating systems may be divided into extrinsic re-healing coating system and intrinsic one. The intrinsic re-healing coating system mainly refers to the rebinding effect of non-covalent bonding, such as hydrogen bonding, hydrophobic effect and electrostatic interactions and covalent bonding, such as DA bonding and disulfide bonding. The extrinsic re-healing coating system relies on the incorporation of restorative agents, with the function of which the damage of a coating system may be restored. The main application technologies of re-healing coating system, such as layer-by-layer(LbL) self-assembly technology, microcapsule packaging technology and chemical conversion coating technology, are reviewed.
引文
[1] Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China[J].NPJ Mater. Degrad., 2017, 1:4
    [2] Dry C M, Sottos N R. Passive smart self-repair in polymer matrix composite materials[A]. Proceedings of SPIE1916, Smart Struc‐tures and Materials 1993[C]. Albuquerque, NM, United States:SPIE, 1993:438
    [3] Naglieri V, Gludovatz B, Tomsia A P, et al. Developing strength and toughness in bio-inspired silicon carbide hybrid materials contain‐ing a compliant phase[J]. Acta Mater., 2015, 98:141
    [4] Bergman S D, Wudl F. Mendable polymers[J]. J. Mater. Chem.,2007, 18:41
    [5] Urban M W. Stratification, stimuli-responsiveness, self-healing, and signaling in polymer networks[J]. Prog. Polym. Sci., 2009, 34:679
    [6] Yabuki A. Self-healing coatings for corrosion inhibition of metals[J]. Mod. Appl. Sci., 2015, 9:214
    [7] Sottos N, White S, Bond I. Self-healing polymers and composites[J]. J. Roy. Soc. Interface, 2007, 4:347
    [8] Cordier P, Tournilhac F, Soulié-Ziakovic C, et al. Self-healing and thermoreversible rubber from supramolecular assembly[J]. Nature,2008, 451:977
    [9] Zhang Z H, Hu Y L, Liu Z S, et al. Synthesis and evaluation of a moisture-promoted healing copolymer[J]. Polymer, 2012, 53:2979
    [10] Wang X, Liu F, Zheng X W, et al. Water-enabled self-healing of polyelectrolyte multilayer coatings[J]. Angew. Chem. Int. Ed.,2011, 123:11580
    [11] White S R, Sottos N R, Geubelle P H, et al. Autonomic healing of polymer composites[J]. Nature, 2001, 409:794
    [12] Skirtach A G, Yashchenok A M, M?hwald H. Encapsulation, re‐lease and applications of LbL polyelectrolyte multilayer capsules[J]. Chem. Commun., 2011, 47:12736
    [13] Njoku C N, Arukalam I O, Bai W C, et al. Optimizing maleic anhy‐dride microcapsules size for use in self‐healing epoxy‐based coat‐ings for corrosion protection of aluminum alloy[J]. Mater. Corr.,2018, 69:1257
    [14] Dong C D, Zhang M X, Xiang T F, et al. Novel self-healing anti‐corrosion coating based on L-valine and MBT-loaded halloysite nanotubes[J]. J. Mater. Sci., 2018, 53:7793
    [15] Song J H, Cui X F, Jin G, et al. Self-healing conversion coating with gelatin-chitosan microcapsules containing inhibitor on AZ91D alloy[J]. Surf. Eng., 2017, 34:79
    [16] Yang L, Lin Y L, Wang L S, et al. The synthesis and characteriza‐tion of supramolecular elastomers based on linear carboxyl-termi‐nated polydimethylsiloxane oligomers[J]. Polym. Chem., 2013,5:153
    [17] Burattini S, Colquhoun H M, Fox J D, et al. A self-repairing, supra‐molecular polymer system:Healability as a consequence of donoracceptorπ-πstacking interactions[J]. Chem. Commun., 2009, 44:6717
    [18] Shen J F, Yan B, Li T, et al. Mechanical, thermal and swelling properties of poly(acrylic acid)-graphene oxide composite hydro‐gels[J]. Soft Matter, 2012, 8:1831
    [19] Phadke A, Zhang C, Arman B, et al. Rapid self-healing hydrogels[J]. Proc. Natl. Acad. Sci. U.S.A, 2012, 109:4383
    [20] Cong H P, Wang P, Yu S H. Stretchable and self-healing graphene oxide-polymer composite hydrogels:A dual-network design[J].Chem. Mater., 2013, 25:3357
    [21] Wang L M, Urata C, Sato T, et al. Self-healing superhydrophobic materials showing quick damage recovery and long-term durabili‐ty[J]. Langmuir, 2017, 33:9972
    [22] Tuncaboylu D C, Sari M, Oppermann W, et al. Tough and selfhealing hydrogels formed via hydrophobic interactions[J]. Macro‐molecules, 2011, 44:4997
    [23] Tuncaboylu D C, Sahin M, Argun A, et al. Dynamics and large strain behavior of self-healing hydrogels with and without surfac‐tants[J]. Macromolecules, 2012, 45:1991
    [24] Akay G, Hassan-Raeisi A, Tuncaboylu D C, et al. Self-healing hy‐drogels formed in catanionic surfactant solutions[J]. Soft Matter,2013, 9:2254
    [25] Tuncaboylu D C, Argun A, Sahin M, et al. Structure optimization of self-healing hydrogels formed via hydrophobic interactions[J].Polymer, 2012, 53:5513
    [26] Miquelard-Garnier G, Creton C, Hourdet D. Strain induced cluster‐ing in polyelectrolyte hydrogels[J]. Soft Matter, 2008, 4:1011
    [27] Shafiq Z, Cui J X, Pastor‐Pérez L, et al. Bioinspired underwater bonding and debonding on demand[J]. Angew. Chem. Int. Ed.,2012, 124:4408
    [28] Holten-Andersen N, Harrington M J, Birkedal H, et al. pH-induced metal-ligand cross-links inspired by mussel yield self-healing poly‐mer networks with near-covalent elastic moduli[J]. Proc. Natl.Acad. Sci. U.S.A, 2011, 108:2651
    [29] Burnworth M, Tang L M, Kumpfer J R, et al. Optically healable su‐pramolecular polymers[J]. Nature, 2011, 472:334
    [30] Chen X X, Dam M A, Ono K, et al. A thermally re-mendable crosslinked polymeric material[J]. Science, 2002, 295:1698
    [31] Zhao H W, Feng L B, Shi X T, et al. Synthesis and healing behav‐ior of thermo-reversible self-healing epoxy resins[J]. Acta Polym.Sin., 2018,(3):395(赵翰文,冯利邦,史雪婷等.热可逆自修复环氧树脂的合成与修复行为[J].高分子学报, 2018,(3):395)
    [32] Amamoto Y, Otsuka H, Takahara A, et al. Self-healing of covalent‐ly cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light[J]. Adv. Mater., 2012, 24:3975
    [33] Yoon J A, Kamada J, Koynov K, et al. Self-healing polymer films based on thiol-disulfide exchange reactions and self-healing kinet‐ics measured using atomic force microscopy[J]. Macromolecules,2012, 45:142
    [34] Xu Y R, Chen D J. A novel self‐healing polyurethane based on di‐sulfide bonds[J]. Macromol. Chem. Phys., 2016, 217:1191
    [35] Sugama T, Gawlik K. Self-repairing poly(phenylenesulfide)coat‐ings in hydrothermal environments at 200℃[J]. Mater. Lett.,2003, 57:4282
    [36] Feng J Z, Ming Y Q, Zhang Y F, et al. Progress of research on en‐capsuled isocyanate self-healing polymeric materials[J]. Chem.Ind. Eng. Prog., 2016, 35:175(冯建中,明耀强,张宇帆等.异氰酸酯胶囊型自修复高分子材料研究进展[J].化工进展, 2016, 35:175)
    [37] Andreeva D V, Fix D, M?hwald H. Self-healing anticorrosion coat‐ings based on pH-sensitive polyelectrolyte/inhibitor sandwichlike nanostructures[J]. Adv. Mater., 2008, 20:2789
    [38] Andreeva D V, Fix D, M?hwald H, et al. Buffering polyelectrolyte multilayers for active corrosion protection[J]. J. Mater. Chem.,2008, 18:1738
    [39] Andreeva D V, Skorb E V, Shchukin D G. Layer-by-layer polyelec‐trolyte/inhibitor nanostructures for metal corrosion protection[J].ACS Appl. Mater. Interfaces, 2010, 2:1954
    [40] Syed J A, Tang S C, Lu H B, et al. Smart PDDA/PAA multilayer coatings with enhanced stimuli responsive self-healing and anticorrosion ability[J]. Colloid Surf. A-Physicochem. Eng. Asp.,2015, 476:48
    [41] Shchukin D G, SukhorukovG B. Nanoparticle synthesis in engi‐neered organic nanoscale reactors[J]. Adv. Mater., 2004, 16:671
    [42] Skirtach A G, Antipov A A, Shchukin D G, et al. Remote activa‐tion of capsules containing Ag nanoparticles and IR dye by laser light[J]. Langmuir, 2004, 20:6988
    [43] K?hler K, Shchukin D G, M?hwald H, et al. Thermal behavior of polyelectrolyte multilayer microcapsules. 1. the effect of odd and even layer number[J]. J. Phys. Chem., 2005, 109B:18250
    [44] Shchukin D G, Gorin D A, M?hwald H. Ultrasonically induced opening of polyelectrolyte microcontainers[J]. Langmuir, 2006,22:7400
    [45] Andreeva D V, Fix D, M?hwald H, et al. Buffering polyelectrolyte multilayers for active corrosion protection[J]. J. Mater. Chem.,2008, 18:1738
    [46] Andreeva D V, Shchukin D G. Smart self-repairing protective coat‐ings[J]. Mater. Today, 2008, 11:24
    [47] Yabuki A, Kaneda R. Barrier and self‐healing coating with fluoro‐organic compound for zinc[J]. Mater. Corros., 2015, 60:444
    [48] Pan M Q, Wang L T, Ding X, et al. The research progress of selfhealing anti-corrosion coatings[J]. Mater. China, 2018, 37:19(潘梦秋,王伦滔,丁璇等.自修复防腐涂层研究进展[J].中国材料进展, 2018, 37:19)
    [49] Balaskas A C, Kartsonakis I A, Tziveleka L A, et al. Improvement of anti-corrosive properties of epoxy-coated AA 2024-T3 with TiO2nanocontainers loaded with 8-hydroxyquinoline[J]. Prog.Org. Coat., 2012, 74:418
    [50] Choi H, Song Y K, Kim K Y, et al. Encapsulation of triethanol‐amine as organic corrosion inhibitor into nanoparticles and its ac‐tive corrosion protection for steel sheets[J]. Surf. Coat. Technol.,2012, 206:23542
    [51] Blaiszik B J, Sottos N R, White S R. Nanocapsules for self-healing materials[J]. Compos. Sci. Technol., 2008, 68:978
    [52] White S R, Sottos N R, Geubelle P H, et al. Autonomic healing of polymer composites[J]. Nature, 2002, 409:794
    [53] Yuan L, Liang G Z, Xie J Q, et al. Synthesis and characterization of microencapsulated dicyclopentadiene with melamine-formalde‐hyde resins[J]. Colloid Polym. Sci., 2007, 285:781
    [54] Shchukin D G, Zheludkevich M, M?hwald H. Feedback active coatings based on incorporated nanocontainers[J]. J. Mater.Chem., 2006, 16:4561
    [55] Gr?ger H, Gyger F, Leidinger P, et al. Microemulsion approach to nanocontainers and its variability in composition and filling[J].Adv. Mater., 2009, 21:1586
    [56] Borisova D, Ak?akayx?ran D, Schenderlein M, et al. Nanocontainer‐based anticorrosive coatings:Effect of the container size on the self‐healing performance[J]. Adv. Funct. Mater., 2013, 23:3799
    [57] Lamaka S V, Zheludkevich M L, Yasakau K A, et al. TiOxself-as‐sembled networks prepared by templating approach as nanostruc‐tured reservoirs for self-healing anticorrosion pre-treatments[J].Electrochem. Commun., 2006, 8:421
    [58] Jiang X M, Jiang Y B, Liu N G, et al. Controlled release from coreshell nanoporous silica particles for corrosion inhibition of alumi‐num alloys[J]. J. Nanomater., 2011, 2011:6
    [59] Fix D, Andreeva D V, Lvov Y M, et al. Application of inhibitor‐loaded halloysite nanotubes in active anti‐corrosive coatings[J].Adv. Funct. Mater., 2009, 19:1720
    [60] Liao L P, Zhang W, Xin Y, et al. Preparation and characterization of microcapsule containing epoxy resin and its self-healing perfor‐mance of anticorrosion covering material[J]. Chin. Sci. Bull.,2011, 56:439
    [61] Jadhav R S, Hundiwale D G, Mahulikar P P. Synthesis and charac‐terization of phenol-formaldehyde microcapsules containing linseed oil and its use in epoxy for self‐healing and anticorrosive coat‐ing[J]. J. Appl. Polym. Sci., 2010, 119:2911
    [62] Samadzadeh M, Boura S H, Peikari M, et al. Tung oil:An autono‐mous repairing agent for self-healing epoxy coatings[J]. Prog.Org. Coat., 2011, 70:383
    [63] Huang J H, Xu X J, Gu C P, et al. Large-scale synthesis of hydrat‐ed tungsten oxide 3D architectures by a simple chemical solution route and their gas-sensing properties[J]. J. Mater. Chem., 2011,21:13283
    [64] Latnikova A, Grigoriev D O, Hartmann J, et al. Polyfunctional ac‐tive coatings with damage-triggered water-repelling effect[J]. Soft Matter, 2011, 7:369
    [65] Selvakumar N, Jeyasubramanian K, Sharmila R. Smart coating for corrosion protection by adopting nano particles[J]. Prog. Org.Coat., 2012, 74:461
    [66] Behzadnasab M, Mirabedini S M, Esfandeh M, et al. Evaluation of corrosion performance of a self-healing epoxy-based coating con‐taining linseed oil-filled microcapsules via electrochemical imped‐ance spectroscopy[J]. Prog. Org. Coat., 2017, 105:212
    [67] Tian R, Fu X L, Zheng Y D, et al. The preparation and character‐ization of double-layer microcapsules used for the self-healing of resin matrix composites[J]. J. Mater. Chem., 2012, 22:25437
    [68] Wei H G, Wang Y R, Guo J, et al. Advanced micro/nanocapsules for self-healing smart anticorrosion coatings[J]. J. Mater. Chem.,2015, 3A:469
    [69] Safaei F, Khorasani S N, Rahnama H, et al. Single microcapsules containing epoxy healing agent used for development in the fabri‐cation of cost efficient self-healing epoxy coating[J]. Prog. Org.Coat., 2018, 114:40
    [70] Wang Q, Li H Y, Cui Y X. Research progress of microcapsules used in self-healing polymer materials[J]. Fiber Reinf. Plast./Compos., 2015,(3):87(王晴,李海燕,崔业翔.自修复聚合物材料用微胶囊的研究进展[J].玻璃钢/复合材料, 2015,(3):87)
    [71] Zuriaga-AgustíE, Galiana-Aleixandre M V, Bes-PiáA, et al. Pollu‐tion reduction in an eco-friendly chrome-free tanning and evalua‐tion of the biodegradation by composting of the tanned leather wastes[J]. J. Clean Prod., 2015, 87:874
    [72] Hamdy A S, Doench I, M?hwald H. Assessment of a one-step intel‐ligent self-healing vanadia protective coatings for magnesium al‐loys in corrosive media[J]. Electrochim. Acta, 2011, 56:2493
    [73] Lou S F, Yang Y P, Wang F, et al. Corrosion resistance and bond‐ing force of silane-lanthanum salt composite film on 6061 Alumi‐num alloy surface[J]. Mater. Prot., 2017, 50(8):50(娄淑芳,杨玉萍,王芳等. 6061铝合金表面硅烷-镧盐复合转化膜的耐蚀性能和结合力[J].材料保护, 2017, 50(8):50)
    [74] Wang Y P, Zhao X H, Lu X Y, et al. Corrosion protection of ceria particles in Mg-rich primer on AZ91D Magnesium alloy[J]. Acta Phys.-Chim. Sin., 2012, 28:407(王雅萍,赵旭辉,卢向雨等.添加氧化铈对AZ91D镁合金表面富镁涂层的保护作用[J].物理化学学报, 2012, 28:407)
    [75] Ning S H. Sol-gel doped with cerium salt and phosphate treatment for the corrosion protection of anodic oxide film of aluminum al‐loy[D]. Chengdu:Southwest Jiaotong University, 2017(宁淑红.掺杂铈盐的溶胶与磷酸盐复合处理对铝合金阳极氧化膜耐蚀性的影响[D].成都:西南交通大学, 2017)
    [76] Liu X Z, Liu Z X, Chen J, et al. Preparation and performance of through-hole AAO film[J]. Spectrosc. Spect. Anal., 2012, 32:2515(刘小珍,刘兆鑫,陈捷等.通孔阳极氧化铝膜的制备及其性能的研究[J].光谱学与光谱分析, 2012, 32:2515)
    [77] Jamali S S, Moulton S E, Tallman D E, et al. Self-healing charac‐teristic of praseodymium conversion coating on AZNd Mg alloy studied by scanning electrochemical microscopy[J]. Electrochem.Commun., 2017, 76:6
    [78] Tavandashti N P, Ghorbani M, Shojaei A, et al. pH responsive Ce(III)loaded polyaniline nanofibers for self-healing corrosion pro‐tection of AA2024-T3[J]. Prog. Org. Coat., 2016, 99:197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700