喷气涡流纺纺纱过程中的气流场数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of airflow field in vortex spinning process
  • 作者:尚珊珊 ; 郁崇文 ; 杨建平 ; 钱希茜
  • 英文作者:SHANG Shanshan;YU Chongwen;YANG Jianping;QIAN Xixi;College of Textiles,Donghua University;Key Laboratory of Textile Science & Technology,Ministry of Education,Donghua University;Shanghai University of Engineering Science;
  • 关键词:喷气涡流纺 ; 纺纱过程 ; 气流场 ; 数值模拟
  • 英文关键词:vortex spinning;;spinning process;;airflow field;;numerical simulation
  • 中文刊名:FZXB
  • 英文刊名:Journal of Textile Research
  • 机构:东华大学纺织学院;东华大学纺织面料技术教育部重点实验室;上海工程技术大学;
  • 出版日期:2019-03-15
  • 出版单位:纺织学报
  • 年:2019
  • 期:v.40;No.396
  • 基金:中央高校基本科研业务费专项资金资助项目(16D310104)
  • 语种:中文;
  • 页:FZXB201903022
  • 页数:8
  • CN:03
  • ISSN:11-5167/TS
  • 分类号:165-172
摘要
为明确高速气流成纱过程中气流产生和发展变化的规律,解决当前研究中存在的不足,对喷气涡流纺初始引纱过程和正常稳定纺纱过程的气流进行三维数值模拟及理论分析,并采用纺纱实验和借助扫描电子显微镜技术验证数值模拟结果。结果表明:纺纱初始时气流扰动小,湍流少,气流流线规则有序发展,喷嘴内负压气流产生强大吸力利于顺利引纱,模拟推测纤维的集束性较好,包缠和抱合效果较差;正常纺纱过程中气流场不稳定,湍流现象明显,气流轨迹复杂,并出现涡流和回流现象,回流为纱提供额外张力,利于提高纱线强力,模拟推测纤维的包缠和抱合效果较好,这也与纺纱实验结果相吻合。
        In order to explicit the discipline of airflow generation and development in yarn formation process under the action of high speed airflow and overcome shortcomings in the current research, three-dimensional numerical simulation of the airflow characteristics during the whole vortex spinning process, including the initial state of yarn drawing-in process and the normal stable process, were obtained and analyzed. Spinning experiments, with the aid of scanning electron microscope, were adopted to verify the results of the numerical simulation. The results show that the state of airflow field is steady, which has less turbulence phenomenon at the beginning of the process, the air streamlines move orderly, the negative pressure produces a strong suction force facilitating drawing fiber bundle into nozzle successfully, and the numerical simulation speculates that the fibers cluster is better, and the wrapped effect is worse, which is consistent with the spinning experiments. The turbulence phenomenon in normal spinning process is more obvious, the trajectory of airflow is complex, the vortex and reflux phenomenon appear, the upstream airflow provides an extra tension for the yarn and may improve yarn strength, the numerical simulation speculates the fiber wrapped effect is better, and the yarn tenacity is predicted higher in numerical simulation results and verified by the spinning experiment results.
引文
[1] 景慎全, 章友鹤, 周建迪,等. 喷气涡流纺产品的结构调整及其应用领域的拓展[J].纺织导报, 2017(11):68-72.JING Shenquan, ZHANG Youhe, ZHOU Jiandi, et al. Adjusting product structure and expanding applications of air jet vortex-spun yarn[J]. China Textile Leader, 2017(11): 68-72.
    [2] 吴红玲, 蒋少军. 浅谈纺纱技术与发展[J]. 纺织器材, 2007(2): 112-116.WU Hongling, JIANG Shaojun. Brief discussion on spinning technology and development [J]. Textile Accessories, 2007(2): 112-116.
    [3] ORTLEK H G, NAIR F, KILIK R, et al. Effect of spindle diameter and spindle working period on the properties of 100% viscose MVS yarns [J]. Fibres & Textiles in Eastern Europe, 2008, 16(3): 17-20.
    [4] 邢明杰.喷气涡流纺成纱机理及其应用的研究[D].上海:东华大学, 2007: 30-65.XING Mingjie. Study on the mechanism of air-jet spinning nozzle and its applications [D]. Shanghai: Donghua University, 2007:30-65.
    [5] RWEI S P, PAI H I, WANG I C. Fluid simulation of the airflow in interlacing nozzles [J]. Textile Research Journal, 2001, 71(7): 630-634.
    [6] ZENG Y C, YU C W. Numerical simulation of air flow in the nozzle of an air-jet spinning machine [J]. Textile Research Journal, 2003, 73(4): 350-356.
    [7] GUO H F, AN X L, YU Z S, et al. A numerical and experimental study on the effect of the cone angle of the spindle in Murata vortex spinning machine [J]. ASME Journal of Fluids Engineering, 2008,130(3):1039-1043.
    [8] 韩晨晨,程隆棣,高卫东,等.基于有限元模型的喷气涡流纺纤维运动轨迹模拟[J].纺织学报,2018,39(2): 32-37.HAN Chenchen, CHENG Longdi, GAO Weidong, et al. Simulation of fiber trajectory in jet vortex spinning based on finite element model [J]. Journal of Textile Research, 2018, 39(2): 32-37.
    [9] 韩晨晨, 程隆棣, 高卫东,等. 传统型与自捻型喷气涡流纺的对比[J]. 纺织学报, 2018, 39(1): 25-31.HAN Chenchen, CHENG Longdi, GAO Weidong, et al. Comparative analysis of conventional and self twist jet vortex spinning [J]. Journal of Textile Research, 2018, 39(1): 25-31.
    [10] 袁龙超,李新荣,郭臻,等.喷气涡流纺喷嘴结构对流场影响的研究进展[J]. 纺织学报, 2018, 39(1): 169-178.YUAN Longchao, LI Xinrong, GUO Zhen, et al. Research progress in influence of vortex spinning nozzle on flow field [J]. Journal of Textile Research, 2018, 39(1): 169-178.
    [11] HOWALDT M, YOGANATHAN A P. Laser-Doppler anemometry to study fluid transport in fibrous asse-mblies[J].Textile Research Journal, 1983, 53(9): 544-551.
    [12] MOORE E M, SHAMBAUGH R L. Analysis of isothermal annular jets comparison of computational fluid dynamics and experimental data[J]. Journal of Applied Polymer Science, 2004, 94(3): 909-922.
    [13] KRUTKA H M, SHAMBAUGH R L. Analysis of multiple jets in the Schwarz melt-blowing die using computational fluid dynamics[J]. Industrial & Engineering Chemistry Research, 2005, 44(23): 8922-8932.
    [14] SUN Y, WANG X. Optimization of air flow field of the melt blowing slot die via numerical simulation and genetic algorithm[J]. Journal of Applied Polymer Science, 2010, 115(3): 1540-1545.
    [15] SUN Y, WANG X. Optimal geometry design of the melt blowing slot die via the orthogonal array method and numerical simulation[J]. Journal of The Textile Institute, 2011, 102(1): 65-69.
    [16] NYLAND G H, SKJETNE P, MIKKELSEN A, et al. Brownian dynamics simulation of needle chains [J]. J Chem Phys, 1996, 105: 1198-1207.
    [17] LI M L, YU C W, SHANG S S. A numerical and experimental study on the effect of the orifice angle of vortex tube in vortex spinning machine [J]. The Journal of The Textile Institute, 2013,104(12): 1303-1311.
    [18] BASAL G, OXENHAM W. Vortex spun yarn vs. air-jet spun yarn [J]. AUTEX Research Journal, 2003, 3(3): 96-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700