局部表面改性紫铜方柱阵列池沸腾传热特性和机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Pool boiling heat transfer performance and mechanism of square copper pillar arrays with partially-modified surface
  • 作者:牟帅 ; 赵长颖 ; 徐治
  • 英文作者:MOU Shuai;ZHAO Changying;XU Zhiguo;Institute of Thermophysics, Shanghai Jiao Tong University;
  • 关键词:局部表面改性 ; 紫铜方柱阵列 ; 润湿性 ; 池沸腾 ; 表面活性剂
  • 英文关键词:partially-modified surface;;square copper pillar array;;wettability;;pool boiling;;surfactant
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:上海交通大学工程热物理研究所;
  • 出版日期:2019-04-15
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:家自然科学基金项目(51576126)
  • 语种:中文;
  • 页:HGSZ201904007
  • 页数:12
  • CN:04
  • ISSN:11-1946/TQ
  • 分类号:2+56-66
摘要
以局部表面改性的紫铜直方柱和梯度方柱阵列为研究对象,实验研究了表面润湿性、表面形貌和表面活性剂对池沸腾换热性能和气泡生长特性的影响。实验工质为去离子水,浓度分别为100、200、400、800 mg·L-1的异丙醇溶液和正庚醇溶液。实验结果表明:方柱阵列表面镀银之后润湿性变差,表面产生的气泡数量减少。向去离子水中添加异丙醇或正庚醇后,在热通量为66.1~202 kW·m-2时,气泡脱离直径变小、数目减少,而当热通量增至413 kW·m-2时,活性剂能够有效阻碍气泡合并,故池沸腾传热系数随着浓度增加先减小后增大。上下层宽分别0.5 mm和1 mm、间距为2 mm的梯度方柱阵列结构有助于气泡的合并,但由于促进了固体表面气膜的形成,从而降低了沸腾换热性能。
        In the present study, the effects of wettability, surface topography and surfactant on the growth of bubbles and pool boiling heat transfer of straight and gradient square copper pillar arrays with partially-modified surface were investigated. The experimental medium was deionized water, 100, 200, 400, 800 mg·L-1 in isopropanol solution and n-heptanol solution. The results showed that silver deposition on square copper pillar decreases the wettability, and increases bubble number. Addition of isopropanol or n-heptanol into deionized water decreases the number and departure diameter of bubbles in the heat flux range of 66.1—202 kW·m-2. However, when the heat flux increases to 413 kW·m-2, the surfactant can effectively prevent bubbles from merging, so the boiling heat transfer coefficient of the pool boiling decreases first and then increases with the increase of the concentration. The gradient square pillar structure with upper and lower layers of 0.5 mm and 1 mm and a spacing of 2 mm promotes the coalescence of bubbles and formation of a gas film on the heating surface, and then worsens pool boiling heat transfer.
引文
[1] Liang G, Mudawar I. Pool boiling critical heat flux(CHF)(1):Review of mechanisms, models, and correlations[J]. International Journal of Heat&Mass Transfer, 2018, 117:1352-1367.
    [2] Song G, Davies P A, Wen J, et al. Nucleate pool boiling heat transfer of SES36 fluid on nanoporous surfaces obtained by electrophoretic deposition of Al2O3[J]. Applied Thermal Engineering, 2018, 141:143-152.
    [3] Kim S H, Lee G C, Kang J Y, et al. A study of nucleate bubble growth on microstructured surface through high speed and infrared visualization[J]. International Journal of Multiphase Flow,2017, 95:12-21.
    [4]吴慧英,吴信宇.水/乙醇混合工质在硅基微通道中的流动与换热[J].化工学报, 2008, 59(11):2706-2712.Wu H Y, Wu X Y. Flow and heat transfer of water/ethanol mixed working fluid in silicon-based microchannels[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(11):2706-2712.
    [5] Park S D, Lee S W, Kang S, et al. Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux[J].Applied Physics Letters, 2010, 97(2):718.
    [6]纪献兵,徐进良.表面活性剂对池沸腾换热的影响[J].工程热物理学报, 2008, 29(12):2049-2052.Ji X B, Xu J L. Effects of surfactants on pool boiling heat transfer[J]. Journal of Engineering Thermophysics, 2008, 29(12):2049-2052.
    [7]柴永志,张伟,李亚,等.非均匀润湿性微通道表面池沸腾换热特性[J].化工学报, 2017, 68(5):1852-1859.Chai Y Z, Zhang W, Li Y, et al. Surface pool boiling heat transfer characteristics of non-uniform wettability microchannels[J].CIESC Journal, 2017, 68(5):1852-1859.
    [8] Hendricks T J, Krishnan S, Choi C, et al. Enhancement of poolboiling heat transfer using nanostructured surfaces on aluminum and copper[J]. International Journal of Heat and Mass Transfer,2010, 53(15/16):3357-3365.
    [9]钟达文,孟继安,李志信.朝下沟槽结构表面池沸腾换热[J].化工学报, 2016, 67(9):3559-3565.Zhong D W, Meng J A, Li Z X. Boiling heat transfer in the surface of a trench structure[J]. CIESC Journal, 2016, 67(9):3559-3565.
    [10]薛淑文,李雨晴,肖卓楠,等.水基SiO2纳米流体沸腾换热特性[J].化工学报, 2017, 68(11):4147-4153.Xue S W, Li Y Q, Xiao Z N, et al. Boiling heat transfer characteristics of water-based SiO2nanofluids[J]. CIESC Journal,2017, 68(11):4147-4153.
    [11] Ciloglu D, Bolukbasi A. A comprehensive review on pool boiling of nanofluids[J]. Applied Thermal Engineering, 2015, 84:45-63.
    [12] Fang X, Wang R, Chen W, et al. A review of flow boiling heat transfer of nanofluids[J]. Applied Thermal Engineering, 2015, 91:1003-1017.
    [13] Wu J M, Zhao J. A review of nanofluid heat transfer and critical heat flux enhancement—research gap to engineering application[J]. Progress in Nuclear Energy, 2013, 66:13-24.
    [14]徐立,赖喜锐,王斌,等.脉冲加热下微加热器在Al2O3纳米流体中的沸腾换热[J].化工学报, 2011, 62(3):678-684.Xu L, Lai X R, Wang B, et al. Boiling heat transfer of microheaters in Al2O3nanofluids under pulse heating[J]. CIESC Journal, 2011, 62(3):678-684.
    [15] Manetti L L, Stephen M T, Beck P A, et al. Evaluation of the heat transfer enhancement during pool boiling using low concentrations of Al2O3-water based nanofluid[J]. Experimental Thermal and Fluid Science, 2017, 87:191-200.
    [16] Karimzadehkhouei M, Shojaeian M,?endur K, et al. The effect of nanoparticle type and nanoparticle mass fraction on heat transfer enhancement in pool boiling[J]. International Journal of Heat and Mass Transfer, 2017, 109:157-166.
    [17]?zbey A, Karimzadehkhouei M, Sefiane K, et al. Changing bubble dynamics in subcooled boiling with TiO2, nanoparticles on a platinum wire[J]. Journal of Molecular Liquids, 2017, 242:456-470.
    [18]程立新,陈听宽.沸腾传热强化技术及方法[J].化工装备技术,1999, 20(1):30-34.Cheng L X, Chen T K. Boiling heat transfer enhancement technology and method[J]. Chemical Industry Equipment Technology, 1999, 20(1):30-34.
    [19]陈宏霞,黄林滨,宫逸飞.多孔结构及表面浸润性对池沸腾传热影响的研究进展[J].化工进展, 2017, 36(8):2798-2808.Chen H X, Huang L B, Gong Y F. Research progress on the effect of porous structure and surface wettability on pool boiling heat transfer[J]. Chemical Industry and Engineering Progress, 2017, 36(8):2798-2808.
    [20] Hsu C C, Lee M R, Wu C H, et al. Effect of interlaced wettability on horizontal copper cylinders in nucleate pool boiling[J]. Applied Thermal Engineering, 2017, 112:1187-1194.
    [21] Betz A R, Xu J, Qiu H, et al. Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling[J]. Applied Physics Letters, 2010, 97(14):141909.
    [22]孔新,魏进家,张永海.亲疏水表面换热性能及其沸腾现象的微细化研究[J].工程热物理学报, 2018, 39(6):1373-1378.Kong X, Wei J J, Zhang Y H. Study on surface heat transfer performance of hydrophobic surface and micronization of boiling phenomenon[J]. Journal of Engineering Thermophysics, 2018, 39(6):1373-1378.
    [23] Forrest E, Williamson E, Buongiorno J, et al. Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings[J]. International Journal of Heat and Mass Transfer, 2010, 53(1/2/3):58-67.
    [24] Rioux R P, Nolan E C, Li C H. A systematic study of pool boiling heat transfer on structured porous surfaces:from nanoscale through microscale to macroscale[J]. AIP Advances, 2014, 4(11):117133.
    [25] Chu K H, Soo J Y, Enright R, et al. Hierarchically structured surfaces for boiling critical heat flux enhancement[J]. Applied Physics Letters, 2013, 102(15):151602.
    [26]张伟,牛志愿,李亚,等.石墨烯/镍复合微结构表面的池沸腾传热特性[J].化工进展, 2018, 37(10):3759-3765.Zhang W, Niu Z Y, Li Y, et al. Pool boiling heat transfer characteristics of graphene/nickel composite microstructures[J].Chemical Industry and Engineering Progress, 2018, 37(10):3759-3765.
    [27] Shin S, Seok Kim B, Choi G, et al. Double-templated electrodeposition:simple fabrication of micro-nano hybrid structure by electrodeposition for efficient boiling heat transfer[J].Applied Physics Letters, 2012, 101(25):251909.
    [28] Kim D E, Park S C, Yu D I, et al. Enhanced critical heat flux by capillary driven liquid flow on the well-designed surface[J].Applied Physics Letters, 2015, 107(2):023903.
    [29] Zou A, Maroo S C. Critical height of micro/nano structures for pool boiling heat transfer enhancement[J]. Applied Physics Letters,2013, 103(22):221602.
    [30]魏进家,张永海.柱状微结构表面强化沸腾换热研究综述[J].化工学报, 2016, 67(1):97-108.Wei J J, Zhang Y H. Review of surface enhanced boiling heat transfer on columnar microstructures[J]. CIESC Journal, 2016, 67(1):97-108.
    [31] Lu M C, Huang C H, Huang C T, et al. A modified hydrodynamic model for pool boiling CHF considering the effects of heater size and nucleation site density[J]. International Journal of Thermal Sciences, 2015, 91:133-141.
    [32]郭兆阳,徐鹏,王元华,等.烧结型多孔表面管外池沸腾传热特性[J].化工学报, 2012, 63(12):3798-3804.Guo Z Y, Xu P, Wang Y H, et al. Boiling heat transfer characteristics of sintered porous surface tube outside the tube[J].CIESC Journal, 2012, 63(12):3798-3804.
    [33] Xu Z G, Zhao C Y. Enhanced boiling heat transfer by gradient porous metals in saturated pure water and surfactant solutions[J].Applied Thermal Engineering, 2016, 100:68-77.
    [34] Lee C Y, Bhuiya M M H, Kim K J. Pool boiling heat transfer with nano-porous surface[J]. International Journal of Heat and Mass Transfer, 2010, 53(19/20):4274-4279.
    [35] Kong X, Zhang Y, Wei J. Experimental study of pool boiling heat transfer on novel bistructured surfaces based on micro-pin-finned structure[J]. Experimental Thermal and Fluid Science, 2018, 91:9-19.
    [36]杨世铭,陶文铨.传热学[M]. 4版.北京:高等教育出版社,2006:398-399.Yang S M, Tao W Q. Heat Transfer[M].4th ed. Beijing:Higher Education Press, 2006:398-399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700