具有无功馈送绕组的多相永磁同步发电机稳态特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Steady-state Characteristics of Multi-phase Permanent Magnet Synchronous Generator with Reactive Power Feeding Windings
  • 作者:张世勇 ; 曾翔君 ; 魏米兰 ; 刘寅迪
  • 英文作者:ZHANG Shiyong;ZENG Xiangjun;WEI Milan;LIU Yindi;School of Electrical Engineering,Xi'an Jiaotong University;
  • 关键词:高压直驱风电机组 ; 多相永磁同步发电机 ; 无功馈送 ; 多相发电机建模
  • 英文关键词:high voltage permanent magnet direct-drive wind turbine;;multi-phase permanent magnetic synchronous generator;;reactive power compensation;;multi-phase generator modeling
  • 中文刊名:DLXT
  • 英文刊名:Automation of Electric Power Systems
  • 机构:西安交通大学电气工程学院;
  • 出版日期:2019-03-06 09:25
  • 出版单位:电力系统自动化
  • 年:2019
  • 期:v.43;No.654
  • 基金:国家自然科学基金面上项目(51477134)~~
  • 语种:中文;
  • 页:DLXT201908016
  • 页数:10
  • CN:08
  • ISSN:32-1180/TP
  • 分类号:167-176
摘要
对于5 MW及以上超大功率近海风电机组,现有中低压技术方案使发电机与变流器均需要承受较大电流,因此风电系统效率低下。文中简述了具有无功馈送绕组的高压永磁多相风力发电机结构。这种新的结构可以利用拓扑简单的单极性变流器串联直接实现高压直流,同时利用无功馈送绕组,向发电机注入无功功率可以实现发电机励磁与转矩的解耦控制。另外,新的技术方案还能在直流母线短路时,对短路电流峰值进行抑制。文中着重分析了该方案中发电机的稳态特性,首先推导了定子多绕组同步发电机的数学模型,然后通过数值计算的方法,利用一个设计好的6.7 MVA风力发电机相关参数对新的技术方案中发电机的稳态特性进行了分析。
        For ultra-high-power offshore wind turbines of 5 MW or above, the current medium and low-voltage technology solutions make generators and converters withstand large currents, which causes the low efficiency of wind power systems. A structure of a high-voltage permanent magnet multi-phase generator with reactive power feed windings is briefly described. This new structure can directly realize high-voltage direct current(HVDC) by using series unipolar converters with simple topology. Besides, the injection of reactive power into the generator with reactive feed windings can realize the decoupling control of the generator excitation and torque. In addition, the new technical solution can also be used to inhibition the peak short-circuit current when the HVDC transmission line is short-circuit. The paper focuses on the steady state characteristics of the generator. Firstly, the mathematical model of the stator multi-winding synchronous generator is deduced, and then the steady-state characteristics of the generator in the new technical scheme are analyzed by numerical calculation method using related parameters of a 6.7 MVA wind turbine.
引文
[1] Global Wind Energy Council. Global wind report: annual market update 2017[R/OL]. [2018-04-25]. http://www.gwec.net/publications/global-wind-report-2.
    [2] 刘波,贺志佳,金昊.风力发电现状与发展趋势[J].东北电力大学学报,2016,36(2):7-13.LIU Bo, HE Zhijia, JIN Hao. Wind power status and development trends[J]. Journal of Northeast Electric Power University, 2016, 36(2): 7-13.
    [3] 张晓.基于无功馈送的定子双绕组永磁同步电机的风电变换系统研究[D].西安:西安交通大学,2014.ZHANG Xiao. Research on the wind power system based on DWPMSG with reactive power compensation[D]. Xi’an: Xi’an Jiaotong University, 2014.
    [4] BLAABJERG F, MA K. Future on power electronics for wind turbine systems[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2013, 1(3): 139-152.
    [5] BLAABJERG F, LISERRE M, MA K. Power electronics converters for wind turbine systems[J]. IEEE Transactions on Industry Applications, 2011, 48(2): 708-719.
    [6] YUAN X. A set of multilevel modular medium-voltage high power converters for 10-MW wind turbines[J]. IEEE Transactions on Sustainable Energy, 2014, 5(2): 524-534.
    [7] SINGH N, AGRAWALV. A survey on power quality improvement converter of PMSG[C]// IET Chennai 4th International Conference on Sustainable Energy and Intelligent Systems, December 12-14, 2013, Chennai, India.
    [8] SZTYKIEL M. Overview of power converter designs feasible for high voltage transformer-less wind turbine[C]// IEEE International Symposium on Industrial Electronics, June 27-30, 2011, Gdansk, Poland.
    [9] ZHAO Tiefei. Design and control of a cascaded H-bridge converter based solid state transformer (SST)[D]. Raleigh: North Carolina State University, 2010.
    [10] WANG Hang, ZENG Xiangjun, ZHANG Meimei, et al. 5L full-scale converter with a DC-link flying-capacitor auxiliary bridge leg for large direct-drive wind turbines[J]. LET Electric Power Applications, 2017, 11(6): 1001-1012.
    [11] ZENG Xiangjun, YANG Yongbing, ZHANG Hongtao, et al. Modelling and control of a multi-phase permanent magnet synchronous generator and efficient hybrid 3L-converters for large direct-drive wind turbines[J]. IET Electric Power Applications, 2012, 6(6): 322-331.
    [12] LEVI E, BOJOI R, PROFUMO F, et al. Multiphase induction motor drives-a technology status review[J]. LET Electric Power Applications, 2007, 1(4): 489-516.
    [13] 杨金波.双三相永磁同步电机驱动技术研究[D].哈尔滨:哈尔滨工业大学,2011.YANG Jinbo. Research on drive technologies of dual three-phase permanent magnet synchronous motor[D]. Harbin: Harbin Institute of Technology, 2011.
    [14] KARTTUNEN J, KALLIO S, PELTONIEMI P, et al. Dual three-phase permanent magnet synchronous machine supplied by two independent voltage source inverters[C]// International Symposium on Power Electronics, Electrical Drives, Automation and Motion, June 20-22, 2012, Sorrento, Italy.
    [15] 王海兵.双三相永磁同步电机高性能调速系统及容错运行研究[D].杭州:浙江大学,2017.WANG Haibing. Research on high performance speed control and fault tolerant operation of the dual three-phase PMSM[D]. Hangzhou: Zhejiang University, 2017.
    [16] MILLER T J E, MCGILP M I. Analysis of multi-phase permanent-magnet synchronous machines[C]// International Conference on Electrical Machines and Systems, November 15-18, 2009, Tokyo, Japan.
    [17] 段斌,刘立刚,苏永新,等.直驱风电机组机侧变流器控制系统动态重构控制策略[J].电力系统自动化,2012,36(14):154-159.DUAN Bin, LIU Ligang, SU Yongxin, et al. A dynamic reconfiguration control strategy for direct-drive wind turbines machine-side converter[J]. Automation of Electric Power Systems, 2012, 36(14): 154-159.
    [18] ASGHAR A B, LIU X. Estimation of wind speed probability distribution and wind energy potential using adaptive neuro-fuzzy methodology[J]. Neurocomputing, 2018, 287: 58-67.
    [19] BILIR L, IMIR M, DEVRIM Y, et al. An investigation on wind energy potential and small scale wind turbine performance at Incek region-Ankara, Turkey[J]. Energy Conversion & Management, 2015, 103: 910-923.
    [20] 谭勋琼,唐佶,吴政球.10 MW变速直驱型风力发电机组的建模及Matlab仿真[J].电力系统保护与控制,2011,39(24):8-15.TAN Xunqiong, TANG Jie, WU Zhengqiu. 10 MW variable speed direct-driven wind turbines modeling and Matlab simulation[J]. Power System Protection and Control, 2011, 39(24): 8-15.
    [21] 唐任远.现代永磁电机理论与设计[M].北京:机械工程出版社,1997.TANG Renyuan. Modern permanent magnet machines theory and design[M]. Beijing: China Machine Press, 1997.
    [22] 孙永恒,王森,陆道荣,等.链式静止同步补偿器预充电稳压方法[J].电力系统自动化,2017,41(4):150-157.DOI:10.7500/AEPS20160418010.SUN Yongheng, WANG Sen, LU Daorong, et al. Methods for stabilizing DC voltage of cascaded static synchronous compensator in pre-charge state[J]. Automation of Electric Power Systems, 2017, 41(4): 150-157. DOI: 10.7500/AEPS20160418010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700