钢筋和混凝土黏结问题中横向压力的上限值
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Upper limit of lateral pressure in bonding problems between steel bar and concrete
  • 作者:赵卫平 ; 雷永旺 ; 赵芷迎 ; 朱彬 ; 王丹
  • 英文作者:ZHAO Weiping;LEI Yongwang;ZHAO Zhiying;ZHU Binrong;WANG Dan;School of Mechanics and Civil Engineering, China University of Mining and Technology;China Electric Power Research Institute;
  • 关键词:钢筋混凝土结构 ; 黏结 ; 横向压力 ; 界面 ; 应力集中
  • 英文关键词:reinforced concrete structure;;bond;;lateral pressure;;interface;;stress concentration
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:中国矿业大学力学与建筑工程学院;中国电力科学研究院;
  • 出版日期:2018-10-24 10:13
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51474218);; 教育部中央高校基本科研业务费专项(2011QL05)
  • 语种:中文;
  • 页:JZJB201901018
  • 页数:8
  • CN:01
  • ISSN:11-1931/TU
  • 分类号:144-151
摘要
根据拔出试验中横向压力的施加方式和钢筋类型,提出了横向压力上限值的计算方法。基于钢筋与混凝土界面应力场的分布,分析了各应力分量可能对混凝土带来的损伤;分析了材料常数、横向压力作用方式和钢筋外形等参数对横向压力上限值的影响;与试验结果的对比表明,建议方法具有一定适用性。研究表明:单轴受压情况更易使混凝土产生受拉损伤,特别是采用带肋钢筋时,破坏形式更倾向于劈裂破坏;双轴受压(围压)作用下混凝土易产生受压损伤,而且所能承受的横向荷载一般高于单轴受压情况;传统的宏观试验研究方法由于不能及时发现钢筋与混凝土界面的损伤,可能会过高估计横向压力的上限值,围压情况下尤为显著。建议算法作为传统试验研究的补充,理论依据充分、计算简便,可供工程设计人员参考。
        According to the exertion patterns of lateral pressure and the types of rebar in the pull-out tests, a calculation method for the upper limit value of lateral pressure was proposed. Based on the stress fields near the bar-to-concrete interface, the possible damage of concrete caused by the stress components was analyzed. The influencing parameters such as material constants, patterns of lateral pressure and the shapes of rebar on the upper limit of lateral pressure were studied in detail. Comparison with experimental results proves that the method presented in this paper has certain applicability. Research shows that uniaxial lateral pressure is more likely to cause tensile damage of concrete, especially when ribbed bars are used, and the specimen is more prone to splitting failure in this case; biaxial compression(confining pressure) is more likely to cause compression damage of concrete, and concrete can withstand higher lateral pressure than when it is subjected to uniaxial compression. Traditional macroscopic test methods may overestimate the upper limit value of lateral pressure due to the failure to detect the damage of bar-to-concrete interface in time, especially under confining pressure conditions. As a supplement to the traditional experimental study, the proposed method is with sufficient theoretical basis as well as convenience in calculation, and can be referenced by engineering designers.
引文
[1] 曹芙波, 尹润平, 王晨霞. 冻融损伤后再生混凝土与钢筋黏结滑移性能梁式试验研究[J]. 建筑结构学报, 2017, 38(4): 141-148. (CAO Fubo,YIN Runping,WANG Chenxia. Beam-type experimental study on bond-slip behavior between recycled concrete and steel bar after freeze-thaw damage[J]. Journal of Building Structures, 2017, 38(4): 141-148. (in Chinese))
    [2] 侯利军, 刘泓, 徐世烺, 等. 锈蚀钢筋与钢纤维混凝土的黏结性能试验研究[J]. 建筑结构学报, 2017, 38(7): 146-155. (HOU Lijun, LIU Hong, XU Shilang, et al. Experimental study on bond between corroded rebar and steel fiber reinforced concrete[J]. Journal of Building Structures, 2017, 38(7): 146-155. (in Chinese))
    [3] 曹万林, 林栋朝, 董宏英, 等. 钢筋-中高强度再生混凝土黏结滑移性能梁式试验研究[J]. 建筑结构学报, 2017, 38(4): 129-140. (CAO Wanlin, LIN Dongchao, DONG Hongying, et al. Beam-type experimental study on bond-slip properties between rebars and medium/high strength recycled concrete[J]. Journal of Building Structures, 2017, 38(4): 129-140. (in Chinese))
    [4] Comité Euro-International du Béton. CEB-FIP model code 2010, first completed draft: bulletin 65[S]. [S.l.]: CEB-FIP, 2013.
    [5] UNTRAUER R E, HENRY R L. Influence of normal pressure on bond strength[J]. ACI Journal Proceedings, 1965, 62(5): 577-586.
    [6] STOCKER M F, SOZEN M A. Bond characteristics of prestressing strand: No. 503[R]. Chicago: University of Illinois, 1970: 45-52.
    [7] MALVAR L J. Bond of reinforcement under controlled confinement[J]. ACI Material Journal, 1992, 89(6): 593- 601.
    [8] XU F, WU Z M, ZHENG J J, et al. Bond behavior of plain round bars in concrete under complex lateral pressures[J]. ACI Structural Journal, 2014, 111(1): 15-25.
    [9] ELIGEHAUSEN R, POPOV E P, BERTERO V V. Local bond stress-slip relationships of deformed bars under generalized excitations: UCB/EERC-83/23[R]. Berkeley: Earthquake Engineering Research Center, University of California, 1983: 169-172.
    [10] ROBINS P J, STANDISH I G. The influence of lateral pressure upon anchorage bond[J]. Magazine of Concrete Research, 1984, 36(129): 195-202.
    [11] LALDJI S, YOUNG A G. Bond between steel strand and cement grout in ground anchorage[J]. Magazine of Concrete Research, 1988, 40(143): 90-98.
    [12] 王传志, 滕智明. 钢筋混凝土结构理论[M]. 北京: 中国建筑工业出版社, 1985: 254-295. (WANG Chuanzhi, TENG Zhiming. Theory of reinforced concrete structures[M]. Beijing: China Architecture & Building Press, 1985: 254-295.(in Chinese))
    [13] WALKER P, BATAYNEH M, REGAN P. Bond strength tests on deformed reinforcement in normal weight concrete[J]. Materials and Structures, 1997, 30(7): 424- 429.
    [14] 赵卫平. 横向压力对钢筋与混凝土黏结性能的影响[J]. 工程力学, 2012, 29(4): 168-177. (ZHAO Weiping. Impacts of transverse pressure on bond capability of bars in concrete[J]. Engineering Mechanics, 2012, 29(4): 168-177. (in Chinese))
    [15] XU F, WU Z M, ZHENG J J, et al. Experimental study on the bond behavior of reinforcing bars embedded in concrete subjected to lateral pressure[J]. Journal of Materials in Civil Engineering,2012,24(1):125-133.
    [16] KARSAN I D, JIRAS J O. Behavior of concrete under compressive loadings[J]. Journal of the Structural Division, 1969, 95(12): 2535-2563.
    [17] BSI. Eurocode 2:design of concrete structures:part 1-1: general rules and rules for buildings: BS EN 1992-1-1[S]. British: British Standards Institution, 2004.
    [18] 钢筋混凝土用钢: 第2部分: 热轧带肋钢筋: GB 1499.2—2007[S]. 北京: 中国建筑工业出版社, 2007. (Steel for the reinforcement of concrete: part 2: hot rolled ribbed bars: GB 1499.2—2007[S]. Beijing: China Architecture & Building Press, 2007. (in Chinese))
    [19] GOPALARATNAM V S, SHAH S P. Softening response of plain concrete in direct tension[J]. ACI Journal, 1985, 82(3): 310-323.
    [20] TEPFERS R. Cracking of concrete cover along anchored deformed reinforcing bars[J]. Magazine of Concrete Research, 1979, 31(106): 3-12.
    [21] TIMOSHENKO S P, GOODIER J N. Theory of elasticity[M]. 3rd ed. Beijing: Tsinghua University & McGraw-Hill Press, 2004: 90-97.
    [22] KUPFER H, HILSDORF H K, RUSCH H. Behavior of concrete under biaxial stresses[J]. ACI Journal, 1969, 99(8): 656- 666.
    [23] Comité Euro-International du Béton. High performance concrete, recommended extensions to the model code 90: No. 228[S]. [S.l.]: CEB-FIP, 1995.
    [24] ROBINS P J, STANDISH I G. The effect of lateral pressure on the bond of round reinforcing bars in concrete[J]. International Journal of Adhesion and Adhesives, 1982, 2(2): 129-133.
    [25] TORRE-CASANOV A, JASON L, DAVENNE L, et al. Confinement effects on the steel-concrete bond strength and pull-out failure[J]. Engineering Fracture Mechanics, 2013, 97: 92-104.
    [26] 崔钦淑, 王建东, 郭颜恺. 高强箍筋高强混凝土Z形截面柱框架节点抗震性能试验研究[J].建筑结构学报, 2018, 39(3): 56- 66. (CUI Qinshu, WANG Jiandong, GUO Yankai. Experimental research on seismic behavior of high-strength concrete Z-shaped column frame joints with high-strength stirrups[J]. Journal of Building Structures, 2018, 39(3): 56- 66. (in Chinese))
    [27] 赵花静, 李青宁, 姜维山, 等.高强螺旋钢筋约束高强混凝土剪力墙抗震性能研究[J]. 建筑结构学报, 2018, 39(4): 54- 64. (ZHAO Huajing, LI Qingning, JIANG Weishan, et al. Experimental study on seismic behavior of high-strength concrete shear walls confined with high-strength spiral reinforcements[J]. Journal of Building Structures,2018,39(4):54- 64.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700