中国东部新生代碱性玄武岩橄榄石斑晶中含CH_4熔体包裹体的发现及其地质意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Methane-bearing melt inclusion in olivine phenocryst in Cenozoic alkaline basalt from Eastern China and its geological significance
  • 作者:刘芳 ; 宗克清 ; 刘勇胜 ; 胡兆初 ; 朱律运 ; 徐荣
  • 英文作者:LIU Fang;ZONG KeQing;LIU YongSheng;HU ZhaoChu;ZHU LüYun;XU Rong;State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences;State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:碱性玄武岩 ; 熔体包裹体 ; 橄榄石 ; 激光拉曼 ; 深部碳循环
  • 英文关键词:alkaline basalt,melt inclusions,olivine,Laser Roman,deep carbon cycle
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:中国地质大学地质过程与矿产资源国家重点实验室;中国科学院广州地球化学研究所同位素年代学和地球化学重点实验室;中国科学院大学;
  • 出版日期:2015-05-20
  • 出版单位:科学通报
  • 年:2015
  • 期:v.60
  • 基金:国家自然科学基金(41203027,41473031);; 高等学校博士学科点专项科研基金(2011014512);; 中国地质大学(武汉)中央高校基本科研业务费专项资金(CUGL140403);; 高等学校学科创新引智计划(B07039);; 中国地质调查局地质调查工作项目(12120114079801)资助
  • 语种:中文;
  • 页:KXTB201514008
  • 页数:10
  • CN:14
  • ISSN:11-1784/N
  • 分类号:86-95
摘要
碱性玄武质岩浆起源于上地幔或者更深处,是了解地幔物质组成的重要窗户.熔体包裹体是主矿物在结晶过程中被捕获的,不易受到后期地质作用的影响,最早结晶的矿物橄榄石所捕获的熔体可以有效地记录原始岩浆的物理化学信息.在此次研究中,利用激光拉曼光谱(LA-Raman)对华北克拉通东部山东杨庄新生代碱性玄武岩橄榄石中,73个熔体包裹体内的气体组分进行了原位分析,并利用激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)对寄主橄榄石的主微量元素进行了测试.结果显示,熔体包裹体中含有高含量的CH4等烃类,而且含有石墨和碳酸盐等矿物,这为CH4在上地幔高温高压条件下能够稳定存在提供了直接证据,也表明中国东部地幔存在低氧逸度的区域.橄榄石斑晶具有高Ni,高Fe/Mn比值的特点,指示源区可能存在辉石岩组分.结合其他地球化学和地球物理资料,西太平洋板块对中国东部岩石圈地幔的俯冲效应可以很好地解释玄武岩源区存在辉石岩组分和CH4富集特征的现象.CH4是深部碳的重要存在形式之一,太平洋板块俯冲作用可能是中国东部深部碳循环重要的动力学机制.
        Alkaline basalts originate from the partial melting of the upper mantle or deeper mantle region, and their study can contribute important knowledge of mantle composition. Melt inclusions in these basalts are small natural droplets trapped during the formation of olivine, and can be isolated from later alterations. Therefore, they can effectively record information from the early stages of magma formation and evolution. In this study, the volatile composition of 73 melt inclusions in olivine phenocrysts of alkaline basalts from Yangzhuang in Shandong Province were analyzed by Laser Raman Spectroscopy. The major and trace element compositions of some host olivines were measured by LA-ICP-MS. The results show that these melt inclusions contain amounts of methane(CH4) and other hydrocarbons, and some carbonaceous minerals such as graphite and carbonate. These findings prove that CH4 can stably exist in the upper-mantle environment of high pressure and temperature, and indicate that such a mantle region with low oxygen fugacity does exist below Eastern China. The host olivine phenocrysts are characterized by high Ni content and a high Fe/Mn ratio, implying the presence of a pyroxenite component in the mantle source. The subduction of the Western Pacific Plate beneath the lithospheric mantle of Eastern China is a possible source for the pyroxenite, combined with other geochemical and geophysical data. CH4 is an important form of deep carbon and the subduction of oceanic crust is responsible for the recycling of deep carbon.
引文
1 Bauer J E,Cai W J,Raymond P A,et al.The changing carbon cycle of the coastal ocean.Nature,2013,504:61–70
    2 Reichstein M,Bahn M,Ciais P,et al.Climate extremes and the carbon cycle.Nature,2013,500:287–295
    3 Hazen R M,Jones A P,Baross J A.Carbon in Earth.Washington:Mineralogical Society of America,2013
    4 Zhang H M,Li S G.Deep carbon recycling and isotopetracing:Review and prospect(in Chinese).Sci China Earth Sci,2012,42:1459–1472[张洪铭,李曙光.深部碳循环及同位素示踪:回顾与展望.中国科学:地球科学,2012,42:1459–1472]
    5 Yang W,Teng F Z,Zhang H F,et al.Magnesium isotopic systematics of continental basalts from the North China Craton:Implications for tracing subducted carbonate in the mantle.Chem Geol,2012,328:185–194
    6 Zeng G,Chen L H,Xu X S,et al.Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong,North China.Chem Geol,2010,273:35–45
    7 Dasgupta R,Hirschmann M M.The deep carbon cycle and melting in Earth’s interior.Earth Planet Sci Lett,2010,298:1–13
    8 Manning C E,Shock E L,Sverjensky D.The chemistry of carbon in aqueous fluids at crustal and uppermantle conditions:Experimental and theoretical constraints.Rev Mineral Geochem,2013,75:109–148
    9 Li G,Elderfield H.Evolution of carbon cycle over the past 100 million years.Geochim Cosmochim Acta,2013,103:11–25
    10 Liu Y,Gao S,Kelemen P B,et al.Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton.Geochim Cosmochim Acta,2008,72:2349–2376
    11 Xu Z,Zhao Z F,Zheng Y F.Slab-mantle interaction for thinning of cratonic lithospheric mantle in North China:Geochemical evidence from Cenozoic continental basalts in central Shandong.Lithos,2012,146-147:202–217
    12 Zeng G,Chen L H,Hofmann A W,et al.Crust recycling in the sources of two parallel volcanic chains in Shandong,North China.Earth Planet Sci Lett,2011,302:359–368
    13 Fukao Y,Obayashi M,Inoue H,et al.Subducting slabs stagnant in the mantle transition zone.J Geophys Res,1992,97:4809–4822
    14 Hole M J,Rogers G,Saunders A D,et al.Relation between alkalic volcanism and slab-window formation.Geology,1991,19:657–660
    15 Huang S,Farka?J,Jacobsen S B.Stable calcium isotopic compositions of Hawaiian shield lavas:Evidence for recycling of ancient marine carbonates into the mantle.Geochim Cosmochim Acta,2011,75:4987–4997
    16 Zhang Z,Zhang H.Diamond and deep carbon cycle(in Chinese).Front Earth Sci,2011,18:268–283[张舟,张宏福.金刚石与深部碳循环.地学前缘,2011,18:268–283]
    17 Liu J,Chen L,Ni P.Fluid/melt inclusions in Cenozoic mantle xenoliths from Linqu,Shandong Province,eastern China:Implications for asthenosphere-lithosphere interactions.Chin Sci Bull,2010,55:1067–1076
    18 Yang G,Zhao Z Y,Shao M L.Formation of carbon dioxide and hydrocarbon gas reservoirs in the Changling fault depression,Songliao Basin.Petrol Explor Dev,2011,38:52–58
    19 Scott H P,Hemley R J,Mao H K,et al.Generation of methane in the Earth’s mantle:In situ high pressure-temperature measurements of carbonate reduction.Proc Natl Acad Sci USA,2004,101:14023–14026
    20 Kolesnikov A,Kutcherov V G,Goncharov A F.Methane-derived hydrocarbons produced under upper-mantle conditions.Nat Geosci,2009,2:566–570
    21 Chen J Y,Jin L J,Dong J P,et al.Methane formation from Ca CO3 reduction catalyzed by high pressure.Chin Chem Lett,2008,19:475 –478
    22 Zhao G,Wilde S A,Cawood P A,et al.Archean blocks and their boundaries in the North China Craton:Lithological,geochemical,structural and P-T path constraints and tectonic evolution.Precambrian Res,2001,107:45–73
    23 Song Y C,Hu W X.Carbonates and sulfates-bearing melt inclusions in corundum megacrysts from Changle basalts of Shandong Province and their implications(in Chinese).Acta Petrol Mineral,2009,28:349–363[宋玉财,胡文瑄.昌乐玄武岩内刚玉巨晶(蓝宝石)中发现富碳酸盐和硫酸盐熔融包裹体及其意义.岩石矿物学杂志,2009,28:349–363]
    24 Xia L Q.On study of chemical composition of magmatic inclusions(in Chinese).Acta Petrol Mineral,1988,1–11[夏林圻.岩浆包裹体化学成分研究.岩石矿物学杂志,1988,1–11]
    25 Schiano P.Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals.Earth-Sci Rev,2003,63:121–144
    26 Liu Y S,Hu Z C,Gao S,et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.Chem Geol,2008,257:34–43
    27 Liu Y S,Gao S,Hu Z C,et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons of mantle xenoliths.J Petrol,2010,51:537–571
    28 Hebert P,Polian A,Loubeyre P,et al.Optical studies of methane under high pressure.Phys Rev B,1987,36:9196–9201
    29 Zerr A,Serghiou G,Boehler R,et al.Decomposition of alkanes at high pressures and temperatures.High Pressure Res,2006,26:23–32
    30 Sharma S K,Mao H K,Bell P M.Raman Measurements of Hydrogen in the Pressure Range 0.2–630 kbar at Room Temperature.Phys Rev Lett,1980,44:886–888
    31 Yang X Y,Zhang Y F,Liu D L,et al.Carbon isotope composition of carbon dioxide in fluid inclusions from peridotite xenoliths and eclogites in East China(in Chinese).Acta Petrol Sin,2000,16:473–481[杨晓勇,郑永飞,刘德良,等.中国东部橄榄岩包体和榴辉岩中CO2流体包裹体的碳同位素组成.岩石学报,2000,16:473–481]
    32 Tang H Y,Zheng J P,Yu C M.Mantle fuilds and noble gas isotopic compositions of perdotitic olivines in Cenozoic basalts from eastern North China(in Chinese).Acta Petrol Sin,2007,23:1531–1542[汤华云,郑建平,余淳梅.华北东部新生代玄武岩中橄榄岩捕虏体的流体及稀有气体组成研究.岩石学报,2007,23:1531–1542]
    33 Fan Q,Hooper P R.The mineral chemistry of ultramafic xenoliths of Eastern China:Implications for upper mantle composition and the paleogeotherms.J Petrol,1989,30:1117–1158
    34 Zheng J P,Giffin W L,O’Reilly S Y,et al.Mineral Chemistry of Peridotites from Paleozoic,Mesozoic and Cenozoic Lithosphere:Constraints on Mantle Evolution beneath Eastern China.J Petrol,2006,47:2233–2256
    35 Xiao Y,Zhang H F,Fan W M,et al.Evolution of lithospheric mantle beneath the Tan-Lu fault zone,eastern North China Craton:Evidence from petrology and geochemistry of peridotite xenoliths.Lithos,2010,117:229–246
    36 Simkin T,Smith J.Minor-element distribution in olivine.J Geol,1970,304–325
    37 Thompson R N,Gibson S A.Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites.Nature,2000,407:502–506
    38 Herzberg C.Identification of Source Lithology in the Hawaiian and Canary Islands:Implications for Origins.J Petrol,2011,52:113–146
    39 Putirka K,Ryerson F J,Perfit M,et al.Mineralogy and Composition of the Oceanic Mantle.J Petrol,2011,52:279–313
    40 Hong L B,Zhang Y H,Qian S P,et al.Constraints from melt inclusions and their host olivines on the petrogenesis of Oligocene-Early Miocene Xindian basalts,Chifeng area,North China Craton.Contrib Mineral Petrol,2013,165:305–326
    41 Hart S R,Davis K E.Nickel partitioning between olivine and silicate melt.Earth Planet Sci Lett,1978,40:203–219
    42 Rudnick R,Gao S.Composition of the continental crust.Treatise Geochem,2003,3:1–64
    43 Sobolev A V,Hofmann A W,Kuzmin D V,et al.The amount of recycled crust in sources of mantle-derived melts.Science,2007,316:412 –417
    44 Gao S,Rudnick R L,Xu W L,et al.Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton.Earth Planet Sci Lett,2008,270:41–53
    45 Gao S,Rudnick R L,Yuan H L,et al.Recycling lower continental crust in the North China Craton.Nature,2004,432:892–897
    46 Kuritani T,Ohtani E,Kimura J I.Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation.Nat Geosci,2011,4:713–716
    47 Sakuyama T,Tian W,Kimura J I,et al.Melting of dehydrated oceanic crust from the stagnant slab and of the hydrated mantle transition zone:Constraints from Cenozoic alkaline basalts in eastern China.Chem Geol,2013,359:32–48
    48 Chen L H,Zeng G,Jiang S-Y,et al.Sources of Anfengshan basalts:Subducted lower crust in the Sulu UHP belt,China.Earth Planet Sci Lett,2009,286:426–435
    49 Sephton M A,Hazen R M.On the origins of deep hydrocarbons.Rev Mineral Geochem,2013,75:449–465
    50 Kelley D S,Früh-Green G L.Abiogenic methane in deep-seated mid-ocean ridge environments:Insights from stable isotope analyses.J Geophys Res,1999,104:10439–10460
    51 Sleep N H,Meibom A,Fridriksson T,et al.H2-rich fluids from serpentinization:Geochemical and biotic implications.Proc Natl Acad Sci USA,2004,101:12818–12823
    52 Dobson D P,Meredith P G,Boon S A.Simulation of subduction zone seismicity by dehydration of serpentine.Science,2002,298:1407–1410
    53 Ranero C R,Phipps M J,Mc Intosh K,et al.Bending-related faulting and mantle serpentinization at the Middle America trench.Nature,2003,425:367–373
    54 Song S,Su L,Niu Y,et al.CH4 inclusions in orogenic harzburgite:Evidence for reduced slab fluids and implication for redox melting in mantle wedge.Geochim Cosmochim Acta,2009,73:1737–1754
    55 Huang J,Zhao D.High-resolution mantle tomography of China and surrounding regions.J Geophys Res,2006,111:B09305
    56 Chen Y,Pei S.Tomographic structure of East Asia:II.Stagnant slab above 660 km discontinuity and its geodynamic implications.Earthq Sci,2010,23:613–626
    57 Pei S,Chen Y.Tomographic structure of East Asia:I.No fast(slab)anomalies beneath 660 km discontinuity.Earthq Sci,2010,23:597 –611
    58 Xu W W,Zheng T Y,Zhao L.Mantle dynamicsof the reactivating North China Craton:Constraints from the topographies of the 410-km and 660-km discontinuities(in Chinese).Sci China Earth Sci,2011,54:678–685[许卫卫,郑天愉,赵亮.华北地区410 km间断面和660 km间断面结构——克拉通活化的地幔动力学状态探测.中国科学:地球科学,2011,41:678–685]
    59 Zhang W H,Zhang H F,Fan W M,et al.The genesis of Cenozoic basalts from the Jining area,northern China:Sr-Nd-Pb-Hf isotope evidence.J Asian Earth Sci,2012,61:128–142
    60 Zhu R X,Xu Y G,Zhu G,et al.Destruction of the North China Craton(in Chinese).Sci China Earth Sci,2012,42:1135–1159[朱日祥,徐义刚,朱光,等.华北克拉通破坏.中国科学:地球科学,2012,42:1135–1159]
    61 Huang R F,Sun W D,Ding X,et al.Mechanism for serpentinization of mafic and ultramafic rocks and the potential of mineralization(in Chinese).Acta Petrol Sin,2013,29:4336–4348[黄瑞芳,孙卫东,丁兴,等.基性和超基性岩蛇纹石化的机理及成矿潜力.岩石学报,2013,29:4336–4348]
    62 Maekawa H,Yamamoto K,Teruaki I,et al.Serpentinite seamounts and hydrated mantle wedge in the Izu-Bonin and Mariana forearc regions.Bull Earthq Res Inst,2002,76:355–366
    63 Hyndman R D,Peacock S M.Serpentinization of the forearc mantle.Earth Planet Sci Lett,2003,212:417–432

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700