灭活与非灭活条件下植物乳杆菌去除U(VI)的机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism of U(VI) removal by Lactobacillus plantarum under inactivated and non-inactivated conditions
  • 作者:刘金香 ; 蒲亚帅 ; 谢水波 ; 刘迎九 ; 陈子庚 ; 李仕友
  • 英文作者:LIU Jin-xiang;PU Ya-shuai;XIE Shui-bo;LIU Ying-jiu;Chen Zi-geng;Li Shi-you;School of Civil Engineering, University of South China;Hunan Province Key Laboratory of Pollution Control and Resource Reuse Technology, University of South China;
  • 关键词:植物乳杆菌 ; U(VI) ; 生物吸附 ; 矿化机理 ; 生物还原
  • 英文关键词:Lactobacillus plantarum;;U(VI);;biosorption;;mineralization mechanism;;bioreduction
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:南华大学土木工程学院;南华大学污染控制与资源化技术湖南省高校重点实验室;
  • 出版日期:2019-07-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金资助项目(11475080);; 湖南省南华大学博士科研启动基金项目(2016XQD06)
  • 语种:中文;
  • 页:ZGHJ201907026
  • 页数:9
  • CN:07
  • ISSN:11-2201/X
  • 分类号:194-202
摘要
在不同时间,pH值和生物量浓度条件下,进行了灭活与非灭活植物乳杆菌去除水中铀的对比试验,探讨了二者去除水中铀的机理,通过SEM-EDS、FTIR、XPS及XRD分析了铀与菌体表面的微观作用机理以及菌体表面沉积物的特征.结果表明:植物乳杆菌经灭活后,其吸附铀的能力得到显著的提高,当U(VI)初始浓度为10mg/L、pH值为6.0、37℃条件下,120min内灭活菌体对U(VI)的去除率为94.7%,而活菌体的去除率为88.9%.灭活菌体具有更高的铀吸附容量,在生物量浓度为0.06~0.24mg/L,pH值(3.0~7.0)条件下,灭活菌体与活菌体的U(VI)累积容量比W均大于1. SEM-EDS、FTIR分析结果表明,活细胞和灭活细胞都可通过细胞表面的羟基、酰基及羧基等官能团吸附、配位络合U(VI).XRD分析表明,活菌体可生物磷酸矿化水中的U(VI).活菌体的XRD谱图在2θ(18.023,25.492,27.343,40.813°处)有4个明显的磷酸铀酰晶体峰,而灭活菌体的XRD谱图显示为非晶态.XPS结果表明,活菌体可生物还原U(VI).活菌体能谱图中U4f7/2和U4f5/2轨道出现了结合能为380.20eV和390.65eV的U(VI)分裂峰,而灭活菌体的能谱图中没有出现U(IV)的分裂峰.
        The uranium removal tests of inactivated and non-inactivated Lactobacillus plantarum were carried out under different pH and biomass concentration conditions, and the mechanism of uranium removal by Lactobacillus plantarum was discussed. Based on SEM-EDS, FTIR, XPS, and XRD, the microscopic mechanism of the interaction between uranium and microbial cell surface and the characteristics of sediments on the cell surface were analyzed. The ability of Lactobacillus plantarum to adsorb uranium was significantly improved after heat inactivation. With the pH 6.0, 37 ℃and the 10 mg/L U(VI), the removal efficiency of U(VI) by heat-killed cells was up to 94.7% during 120 min, while the removal efficiency was only 88.9% by live cells. The inactivated bacteria had higher uranium adsorption capacity. At the biomass concentration of 0.06~0.24 mg/L and pH value of 3.0~7.0, the rate(W) of accumulative capacity of U(VI) of inactivated bacteria to that of living bacteria is greater than 1. SEM-EDS、FTIR result illustrated the U(VI) could be adsorbed or coordinated on the surface of the active and inactivated cells through functional groups such as hydroxyl, acyl and carboxyl groups. There were 4 distinct crystal peaks of uranyl phosphate compound at 2θ(18.023, 25.492, 27.343 and 40.813°) in the XRD spectrum of living bacteria, while no crystal peaks in the spectrum of inactivated bacteria. XRD result indicated U(VI) can be precipitated with the form of uranyl phosphate by biological metabolism of live cells. There were the peaks attributed U(IV) at U 4 f 7/2 with binding energy of 381.20 eV and U 4 f 5/2 with 390.95 eV in the XPS energy spectrum of living bacteria. While There was no the peaks attributed U(IV) in the spectrum of inactivated bacteria. XPS result indicated that U(VI) can be induced to U(IV) by living bacteria.
引文
[1]Wang X,Wang T,Zheng X,et al.Isotherms,thermodynamic and mechanism studies of removal of low concentration uranium(VI)by Aspergillus niger.[J].Water Science&Technology A Journal of the International Association on Water Pollution Research,2017,75(12):2727-2736.
    [2]黄荣,覃贻琳,聂小琴,等.大肠杆菌与水体中U(Ⅵ)的作用行为和产物研究[J].中国环境科学,2016,36(6):1780-1787.Huang R,Qin Y,Nie X,et al.The adsorption mechanism and adsorptive products of Escherichia coli and uranium(VI)in water.[J].China Environmental Science,2016,36(6):1780-1787.
    [3]Soares E V,Coninck G D,Duarte F,et al.Use of Saccharomyces cerevisiae for Cu2+removal from solution:the advantages of using a flocculent strain[J].Biotechnology Letters,2002,24(8):663-666.
    [4]Lu X,Zhou X J,Wang T S.Mechanism of uranium(VI)uptake by Saccharomyces cerevisiae under environmentally relevant conditions:batch,HRTEM,and FTIR studies.[J].Journal of Hazardous Materials,2013,262(8):297-303.
    [5]Kulkarni S,Misra C S,Gupta A,et al.Interaction of Uranium with Bacterial Cell Surfaces:Inferences from Phosphatase-Mediated Uranium Precipitation[J].Applied&Environmental Microbiology,2016,82(16):4965-4974.
    [6]王永华,谢水波,刘金香,等.奥奈达希瓦氏菌MR-1还原U(VI)的特性及影响因素[J].中国环境科学,2014,34(11):2942-2949.Wang Y,Xie S,Liu J,et al.Characteristics of reducing U(VI)by Shewanella oneidensis MR-1and its impact factors.[J].China Environmental Science,2014,34(11):2942-2949.
    [7]Yin R,Zhai Q,Yu L,et al.The binding characters study of lead removal by Lactobacillus plantarum.CCFM8661[J].European Food Research&Technology,2016,242(10):1621-1629.
    [8]Takehiko Tsuruta.Removal and recovery of uranium using microorganisms isolated from Japanese uranium deposits[J].Journal of Nuclear Science&Technology,2006,43(8):896-902.
    [9]翟齐啸.乳酸菌减除镉危害的作用及机制研究[D].无锡:江南大学,2015.Zhai Q.Effects of lactic acid bacteria against cadmium toxicity and the involved protective mechanisms[D].Wuxi:Jiangnan University,2015.
    [10]Zamudio M,González A,Medina J A.Lactobacillus plantarum,phytase activity is due to non-specific acid phosphatase[J].Letters in Applied Microbiology,2001,32(3):181.
    [11]Zhang Y,Xu D,Zhao X,et al.Biodegradation of two organophosphorus pesticides in whole corn silage as affected by the cultured Lactobacillus plantarum.[J].Biotech,2016,6(1):73.
    [12]HJ 840-2017环境样品中微量铀的分析方法[S].HJ 840-2017 Analytical method for trace uranium in environmental samples[S].
    [13]Wang T,Zheng X,Wang X,et al.Different biosorption mechanisms of Uranium(VI)by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions.[J].Journal of Environmental Radioactivity,2017,167:92-99.
    [14]Hufton J,Harding J H,Romero-González M E.The role of extracellular DNA in uranium precipitation and biomineralisation[J].Physical Chemistry Chemical Physics,2016,18(42):29101-29112.
    [15]Pingitore E V,Pessione A,Fontana C,et al.Comparative proteomic analyses for elucidating metabolic changes during EPS production under different fermentation temperatures by Lactobacillus plantarum,Q823[J].International Journal of Food Microbiology,2016,238:96-102.
    [16]Ji W,Xiao Z,Zheng T,et al.Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11isolated from Tibet Kefir[J].Carbohydrate Polymers,2015,125:16-25.
    [17]Liu M,Dong F,Yan X,et al.Biosorption of uranium by Saccharomyces cerevisiae and surface interactions under culture conditions.[J].Bioresource Technology,2010,101(22):8573-8580.
    [18]Gerbino E,Mobili P,Tymczyszyn E,et al.FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir,S-layers and metal ions[J].Journal of Molecular Structure,2011,987(1):186-192.
    [19]Gerbino E,Carasi P,Araujo-Andrade C,et al.Role of S-layer proteins in the biosorption capacity of lead by Lactobacillus kefir[J].World Journal of Microbiology&Biotechnology,2015,31(4):583-592.
    [20]Pan X,Chen Z,Chen F,et al.The mechanism of uranium transformation from U(VI)into nano-uramphite by two indigenous Bacillus thuringiensis,strains[J].Journal of Hazardous Materials,2015,297:313-319.
    [21]Martins M,Faleiro M L,Costa A M R D,et al.Mechanism of uranium(VI)removal by two anaerobic bacterial communities.[J].Journal of Hazardous Materials,2010,184(1-3):89.
    [22]Zeng X,Xia W,Wang J,et al.Technological properties of Lactobacillus plantarum,strains isolated from Chinese traditional low salt fermented whole fish[J].Food Control,2014,40(2):351-358.
    [23]Choudhary S,Sar P.Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste.[J].Journal of Hazardous Materials,2011,186(1):336-343.
    [24]Nedelkova M,Merroun M A,Hennig C,et al.Microbacterium isolates from the vicinity of a radioactive waste depository and their interactions with uranium[J].Fems Microbiology Ecology,2007,59(3):694-705.
    [25]Liu J X,Xie S B,Wang Y H,et al.U(VI)reduction by Shewanella oneidensis,mediated by anthraquinone-2-sulfonate[J].Transactions of Nonferrous Metals Society of China,2015,25(12):4144-4150.
    [26]Sz?ll?si A,Rezessy-SzabóJ M,Hoschkeá,et al.Novel method for screening microbes for application in microbial fuel cell[J].Bioresource Technology,2015,179(179C):123-127.
    [27]Salomone V N,Meichtry J M,Zampieri G,et al.New insights in the heterogeneous photocatalytic removal of U(VI)in aqueous solution in the presence of 2-propanol[J].Chemical Engineering Journal,2015,261:27-35.
    [28]谢水波,陈胜,马华龙,等.硫酸盐还原菌颗粒污泥去除U(Ⅵ的)影响因素及稳定性[J].中国有色金属学报,2015,25(6):1713-1720.Xie S,Chen S,Ma H,et al.Influence factors and stability of U(Ⅵ)removal by sulfate reducing bacteria granular sludge[J].The Chinese Journal of Nonfer rous Metal,2015,25(6):1713-1720.
    [29]Goldik J S,Nesbitt H W,No?l J J,et al.Surface electrochemistry of UO in dilute alkaline hydrogen peroxide solutions[J].Electrochimica Acta,2004,49(11):1699-1709.
    [30]Senanayake S D,Soon A,Kohlmeyer A,et al.Carbon monoxide reaction with UO[sub 2](111)single crystal surfaces:A theoretical and experimental study[J].Journal of Vacuum Science&Technology AVacuum Surfaces&Films,2005.
    [31]Pereira P H F,Voorwald H J C,Cioffi M O H,et al.Sugarcane bagasse cellulose fibres and their hydrous niobium phosphate composites:synthesis and characterization by XPS,XRD and SEM[J].Cellulose,2014,21(1):641-652.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700