潮土区农田土体构型层次的探地雷达无损探测试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Test on nondestructive detection of farmland solum structure in fluvo-aquic soil area using ground penetrating radar
  • 作者:宋文 ; 张敏 ; 吴克宁 ; 李俐 ; 赵华甫 ; 李俊颖
  • 英文作者:Song Wen;Zhang Min;Wu Kening;Li Li;Zhao Huafu;Li Junying;School of Land Science and Technology, China University of Geosciences;Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Land and Resources;College of Information and Electrical Engineering, China Agricultural University;
  • 关键词:雷达 ; 土壤 ; 模型 ; 土体构型 ; 耕地质量 ; 正演模拟 ; 黄淮海平原 ; 农田潮土
  • 英文关键词:radar;;soils;;models;;solum structure;;cultivated land quality;;forward modeling;;North China Plain;;farmland fluvo-aquic soil
  • 中文刊名:NYGU
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:中国地质大学(北京)土地科学技术学院;国土资源部土地整治重点实验室;中国农业大学信息与电气工程学院;
  • 出版日期:2018-08-22
  • 出版单位:农业工程学报
  • 年:2018
  • 期:v.34;No.343
  • 基金:国家科技支撑计划(2015BAD06B01)
  • 语种:中文;
  • 页:NYGU201816017
  • 页数:10
  • CN:16
  • ISSN:11-2047/S
  • 分类号:137-146
摘要
为探究探地雷达对自然土壤土体构型进行快速无损探测的可行性,该文首先利用基于时域有限差分法的Gpr Max2D软件模拟4种具有不同介电特性差异的土壤层次的土体模型,识别雷达电磁波在具有不同土壤介电特性差异的土壤层次中传播时反射波振幅和相位的客观变化规律;然后于2016年在位于黄淮海平原潮土区的河北省曲周县选择夹黏型和底漏型2种土壤层次较明显的农田土体构型进行GPR探测试验,并挖掘土壤剖面,通过雷达图像处理软件和MATLAB编程处理雷达图像并提取波形数据,根据模拟获取的规律进行土壤层次识别,对比探测层厚与实际剖面层厚。研究结果显示,雷达电磁波在不同介质分界面处发生反射,两侧介电特性差异越大,反射波振幅越大;上层介质介电常数小于下层会发生正反射,反之发生负反射;实测波形比模拟波形杂乱;通过电磁波振幅和相位变化识别层次界面清晰的夹黏型土体构型中较厚层次的厚度的相对误差(<9%)要小于识别层次界面不清晰的底漏型土体构型各层厚度的相对误差(>9%);可识别的层次界面反射系数均大于0.02,两侧土壤具有较大介电特性差异;通过客观判读依据可以判别农田潮土的层次结构,但层次界面的整齐清晰程度、界面两侧介电特性差异程度和相邻层次的厚度大小影响着探地雷达探测效果。该文可以为相关研究提供参考,为实现土体构型这一重要耕地质量指标的快速监测提供借鉴。
        Solum structure is an important index to evaluate the cultivated land quality. How to obtain the solum structure information quickly and accurately has been the hot spot in the fields of soil, land, water conservancy, agriculture, and so on. In order to explore the feasibility of rapid and nondestructive detection of solum structure in natural soil by ground penetrating radar(GPR), this paper first used Gpr Max2 D software based on finite difference time domain(FDTD) to simulate 4 soil models including 3 soil layers with different dielectric characteristics, and recognized the objective change rules of amplitude and phase of the radar electromagnetic wave in those soil layers with different dielectric characteristics. Then, 2 kinds of soil profile patterns i.e. clay interlayer type and sand bottom type with obvious soil layers in Quzhou County of Hebei Province, located in the alluvial soil area of North China Plain, were selected for GPR detection experiment in 2016, and soil profiles were excavated. The clay interlayer type solum structure indicated that a thin clay layer was in the soil mass, and the sand bottom type solum structure indicated that there was a sand layer at the bottom of soil mass with 1 m depth. Radar images were processed through radar image processing software and MATLAB programming to extract waveform data. According to the objective rules obtained by simulation, soil layer identification was carried out, and the detected thickness and measured thickness of every layer were compared. The results showed that the reflection of radar electromagnetic wave occurred at the interface of different media, and the greater the difference of dielectric properties between 2 sides, the greater the amplitude of reflected wave. If the dielectric constant of the upper layer was smaller than that of the lower layer, positive reflection would occur; otherwise negative reflection would occur. The measured waveform was more chaotic than the simulated waveform. The relative error(<9%) for identifying the thickness of the thicker layers of the clay interlayer type solum structure with clear layer interface was less than the relative error(>9%) for identifying the thickness of the sand bottom type solum structure by the amplitude and phase change of the electromagnetic wave. The reflection coefficients of the identified hierarchical interfaces were all greater than 0.02, indicating that the 2 sides of those interfaces had larger dielectric properties difference. The hierarchy of solum structure for farmland fluvo-aquic soil can be identified by the objective interpretation basis, but the tidy and clear degree of the hierarchical interface, difference degree of soil between the 2 sides of the interface and the thickness of adjacent soil layers affect the GPR detection effect. This article can provide reference for the related research and provide basis for rapid monitoring of cultivated land quality with solum structure as an important index.
引文
[1]叶文华.华北平原农田土体构型与作物生长关系的研究[J].地理学报,1985(1):37-49.Ye Wenhua.Study on the relationship between solum struction patterns and growth of crops in farmland of North China Plain[J].Journal of Geographical Sciences,1985(1):37-49.(in Chinese with English abstract)
    [2]李学敏,翟玉柱,李雅静,等.土体构型与土壤肥力关系的研究[J].土壤通报,2005,36(6):975-977.Li Xuemin,Zhai Yuzhu,Li Yajing,et al.Study on the relationship between solum structure and fertility[J].Chinese Journal of Soil Science,2005,36(6):975-977.(in Chinese with English abstract)
    [3]刘美金,琚忠和.红粘土红壤土体构型及其肥力特征[J].中国土壤与肥料,1983(3):1-4.Liu Meijin,Ju Zhonghe.Soil configuration and fertility characteristics of red clay red soil[J].Soil and Fertilizer Sciences,1983(3):1-4.(in Chinese with English abstract)
    [4]Annan A P.GPR—History,trends,and future developments[J].Subsurface Sensing Technologies&Applications,2002,3(4):253-270.
    [5]Bristow C,Pugh J,Goodall T.Internal structure of aeolian dunes in Abu Dhabi determined using ground-penetrating radar[J].Sedimentology,1996,43:955-1003.
    [6]Knight R,Tercier P,Jol H.The role of ground penetrating radar and geostatistics in reservoir description[J].Wireless Communications&Mobile Computing,1997,11(1):46-52.
    [7]Smith D G,Meyers R A,Jol H M.Sedimentology of an upper-mesotidal(3.7 m)Holocene barrier,Willapa Bay,SW Washington,U.S.A[J].Journal of Sedimentary Research,1999,69(6):1290-1296.
    [8]Dam R L V,Schlager W.Identifying causes of groundpenetrating radar reflections using time-domain reflectometry and sedimentological analyses[J].Sedimentology,2000,47(2):435-449.
    [9]Gloaguen E,Chouteau M,Marcotte D,et al.Estimation of hydraulic conductivity of an unconfined aquifer using cokriging of GPR and hydrostratigraphic data[J].Journal of Applied Geophysics,2001,47(2):135-152.
    [10]Dam R L V,Schlager W.Identifying causes of groundpenetrating radar reflections using time-domain reflectometry and sedimentological analyses[J].Sedimentology,2000,47(2):435-449.
    [11]Mokma D L,Schaetzl R J,Doolittle J A,et al.Groundpenetrating radar study of ortstein continuity in some Michigan Haplaquods[J].Soil Science Society of America Journal,1990,54(3):936-938.
    [12]王升,陈洪松,付智勇,等.基于探地雷达的典型喀斯特坡地土层厚度估测[J].土壤学报,2015,52(5):1024-1030.Wang Sheng,Chen Hongsong,Fu Zhiyong,et al.Estimation of thickness of soil layer on typical karst hillslopes using a ground penetrating radar[J].Acta Pedologica Sinica,2015,52(5):1024-1030.(in Chinese with English abstract)
    [13]于秀秀,马兴旺,迪力夏提,等.探地雷达在土层厚度调查中的试验研究[J].土壤学报,2011,48(4):874-878.Yu Xiuxiu,Ma Xingwang,Di Lixiati,et al.Using ground penetrating radar in determination of soil depth[J].Acta Pedologica Sinica,2011,48(4):874-878.(in Chinese with English abstract)
    [14]Ardekani M R,Druyts P,Lambot S,et al.Recovering the structure of a layered soil,including layer thickness and dielectric permittivity,using the interfaces and objects backscatter detected in GPR B-scans[C]//International Conference on Ground Penetrating Radar.IEEE,2014:397-400.
    [15]Farrish K W,Doolittle J A,Gamble E E.Loamy substrata and forest productivity of sandy glacial drift soils in Michigan.[J].Canadian Journal of Soil Science,1990,70(2):181-187.
    [16]Boll J,Rijn R P G V,Weiler K W,et al.Using ground-penetrating radar to detect layers in a sandy field soil[J].Geoderma,1996,70(2/3/4):117-132.
    [17]Mokma D L,Schaetzl R J,Doolittle J A,et al.Groundpenetrating radar study of ortstein continuity in some Michigan Haplaquods.[J].Soil Science Society of America Journal,1990,54(3):936-938.
    [18]Beres M,Haeni F P.Application of ground-penetrating radar methods in hydrogeologic studies[C]//John Wiley&Sons,Ltd.1991:375-386.
    [19]薛建,曾昭发,田刚,等.探地雷达在吉林西部地区探测土壤碱化层[J].物探与化探,2005,29(5):421-424.Xue Jian,Zeng Shaofa,Tian Gang,et al.The application of GPR to detecting the saline-alkali layer in west Jilin[J].Geophysical and Geochemical Exploration,2005,29(5):421-424.(in Chinese with English abstract)
    [20]H?nninen P.Application of ground penetrating radar techniques to peatland investigations[C]//Hanninen P,Autio S.Fourth international conference on ground penetrating radar.Rovaniemi,Finland:Geological Survey of Finland,1992:217-221.
    [21]Shih S F,Doolittle J A.Using radar to investigate organic soil thickness in the florida everglades[J].Soil Science Society of America Journal,1984,48(3):651-656.
    [22]Qian R,Li J,Mu Z,et al.Ground penetrating radar surveys for permafrost assessment in the Qinghai-Tibet Plateau,China[C]//International Workshop on Advanced Ground Penetrating Radar.IEEE,2015:1-4.
    [23]Gacitúa G,Uribe J,Tamstorf M P,et al.Mapping of permafrost surface and active layer properties using GPR:A comparison of frequency dependencies[C]//International Workshop on Advanced Ground Penetrating Radar.IEEE,2011:1-5.
    [24]Léger E,Dafflon B,Soom F,et al.Quantification of arctic soil and permafrost properties using ground-penetrating radar and electrical resistivity tomography datasetsr[C]//International Conference on Ground Penetrating Radar.IEEE,2016:1-6.
    [25]Xu X,Wang F,Xin K,et al.Soil layer thickness detection in land rearrangement project by using GPR data[C]//International Conference on Ground Penetrating Radar.IEEE,2012:387-392.
    [26]胡振琪,陈宝政,陈星彤.应用探地雷达检测复垦土壤的分层结构[J].中国矿业,2005,14(3):73-75.Hu Zhenqi,Chen Baozheng,Chen Xingtong.Study on layer structure of rehabilitated soil using ground-penetrating radar.[J].China Mining Magazine,2005,14(3):73-75.(in Chinese with English abstract)
    [27]赵艳玲,王金,贡晓光,等.基于探地雷达的复垦土壤层次无损探测研究[J].科技导报,2009,27(17):35-37.Zhao Yanling,Wang Jin,Gong Xiaoguang,et al.Nondestructive detection of soil layer based on GPR[J].Science&Technology Review,2009,27(17):35-37.(in Chinese with English abstract)
    [28]杜翠,杨峰,彭猛,等.雷达层析成像对复垦土壤分层结构的探测[J].计算机仿真,2013,30(9):217-220.Du Cui,Yang Feng,Peng Meng,et al.Ground penetrating radar tomography detection for layer structure of mine reclamation soil[J].Computer Simulation,2013,30(9):217-220.(in Chinese with English abstract)
    [29]彭亮,徐清,朱忠礼,等.应用低频微波波段GPR测量土壤结构[J].北京师范大学学报(自然科学版),2007,43(3):324-329.Peng Liang,Xu Qing,Zhu Zhongli,et al.Mapping the soil layers and texture with ground penetrating radar[J].Journal of Beijing Normal University(Natural Science),2007,43(3):324-329.(in Chinese with English abstract)
    [30]Roth K,Wollschlager U,Cheng Z H,et al.Exploring soil layers and water tables with ground-penetrating radar[J].Pedosphere,2004,14(3):273-282.
    [31]朱云峰,王齐仁,邓国文.基于GPRMAX的隧道超前地质预报正演模拟与实测数据分析[J].物探化探计算技术,2016,38(2):185-190.Zhu Yunfeng,Wang Qiren,Deng Guowen.The forward modeling and measured data analysis of the tunnel advanced prediction based on GPRMAX[J].Computing Techniques for Geophysical and Geochemical Exploration,2016,38(2):185-190.(in Chinese with English abstract)
    [32]周奇才,李炳杰,郑宇轩,等.基于GPRMax2D的探地雷达图像正演模拟[J].工程地球物理学报,2008,5(4):396-399.Zhou Qicai,Li Bingjie,Zheng Yuxuan,et al.Forward simulation of GPR image based on GPRMax2D[J].Chinese Journal of Engineering Geophysics,2008,5(4):396-399.(in Chinese with English abstract)
    [33]尹光辉,冯雨宁,张怀凯,等.基于Gpr Max软件的道路路基空洞探地雷达正演模拟[J].物探化探计算技术,2016,38(4):480-486.Yin Guanghui,Feng Yuning,Zhang Huaikai,et al.Forward simulation of ground penetration radar based on the Gpr Max for the roadbed cavity[J].Computing Techniques for Geophysical and Geochemical Exploration,2016,38(4):480-486.(in Chinese with English abstract)
    [34]郭立,崔喜红,陈晋.基于Gpr Max正演模拟的探地雷达根系探测敏感因素分析[J].地球物理学进展,2012,27(4):1754-1763.Guo Li,Cui Xihong,Chen Jin.Sensitive factors analysis in roots based on using GPR for detecting plant forward modeling[J].Progress in Geophysics,2012,27(4):1754-1763.(in Chinese with English abstract)
    [35]Reynolds,John M.An Introduction to Applied and Environmental Geophysics/2nd ed[M].New Jersey:WileyBlackwell,2011.
    [36]宋文淼.电磁波基本方程组[M].北京:科学出版社,2003.
    [37]Yee K.Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[J].IEEE Transactions on Antennas&Propagation,1966,14(3):302-307.
    [38]冯德山,戴前伟,何继善,等.探地雷达GPR正演模拟的时域有限差分实现(英文)[J].地球物理学进展,2006,21(2):630-636.Feng Deshan,Dai Qianwei,He Jishan,et al.Finite difference time domain method of GPR forward simulation[J].Progress in Geophysics,2006,21(2):630-636.(in Chinese with English abstract)
    [39]Giannopoulos A.Modelling ground penetrating radar by Gpr Max[J].Construction&Building Materials,2005,19(10):755-762.
    [40]Galagedara L W,Redman J D,Parkin G W,et al.Numerical modeling of GPR to determine the direct ground wave sampling depth[J].Vadose Zone Journal,2005,4(4):1096-1106.
    [41]宋书艺.滨海土壤微波介电特性研究[D].杭州:浙江大学,2012.Song Shuyi.Study on Microwave Dielectric Property of Coastal Soil[D].Hangzhou:Zhejiang University,2012.(in Chinese with English abstract)
    [42]丁艳玲,刘宝江,李洋洋.L波段对不同盐类土壤的微波介电特性分析[J].地球信息科学学报,2012,14(3):376-381.Ding Yanling,Liu Baojiang,Li Yangyang.Study on microwave dielectric properties of different salt soils at L-Band[J].Geo-Information Science,2012,14(3):376-381.(in Chinese with English abstract)
    [43]熊文成.含水含盐土壤介电特性及反演研究[D].北京:中国科学院,2005.Xiong Wencheng.Studies on Microwave Dielectric Behavior of Moist Salt Soil And Inversion of the Moisture and Salt Content[D].Beijing:Chinese Academy of Sciences,2005.(in Chinese with English abstract)
    [44]雷磊,塔西甫拉提·特依拜,丁建丽,等.干旱区盐渍土介电常数特性研究与模型验证[J].农业工程学报,2013,29(16):125-133.Lei Lei,Tashpolat·Tiyip,Ding Jianli,et al.Constant characteristic and model verification of saline soil dielectric in arid area[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2013,29(16):125-133.(in Chinese with English abstract)(in(in Chinese with English abstract)
    [45]Dobson M C,Ulaby F T,Hallikainen M T,et al.Microwave dielectric behavior of wet soil-part ii:dielectric mixing models[J].Geoscience&Remote Sensing IEEE Transactions on,1985,GE-23(1):35-46.
    [46]胡庆荣.含水含盐土壤介电特性实验研究及对雷达图像的响应分析[D].北京:中国科学院,2003.Hu Qingrong.Studies on Mierowave Dieleetric Behavior of Moist Salt Soil and Its Effect on Backscattering Coefficients Extracted From Radar Image[D].Beijing:Chinese Academy of Sciences,2003.(in Chinese with English abstract)
    [47]曾昭发.探地雷达方法原理及应用[M].北京:科学出版社,2006.
    [48]Gerber R,Salat C,Junge A,et al.GPR-based detection of Pleistocene periglacial slope deposits at a shallow-depth test site[J].Geoderma,2007,139(3):346-356.
    [49]陈宝政.利用微波探地雷达检测复垦土壤的关键技术研究[D].北京:中国矿业大学(北京),2005.Chen Baozheng.Key Technologies for Detecting Soil Reclamation by Microwave Ground Penetrating Radar[D].Beijing:China University of Mining&Technology,2005.(in Chinese with English abstract)
    [50]何瑞珍.探地雷达检测土壤物化质量的关键技术研究[D].北京:中国矿业大学(北京),2011.He Ruizhen.Study on the Crucial Technology of the Detecting Soil Physical and Chemical Quality by the Ground Penetrating Radar[D].Beijing:China University of Mining&Technology,2011.(in Chinese with English abstract)
    [51]Doolittle J A,Collins M E.Use of soil information to determine application of ground penetrating radar[J].Journal of Applied Geophysics,1995,33(1/2/3):101-108.
    [52]贾明权.典型地物微波介电特性实验研究[D].成都:电子科技大学,2008.Jia Mingquan.Experimental Study on Microwave Dielectric Properties of Typical Ground Objects[D].Chengdu:University of Electronic Science and Technology of China,2008.(in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700