大推力液体火箭发动机中的动力学问题
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structural dynamics of the large thrust liquid rocket engines
  • 作者:黄道琼 ; 王振 ; 杜大华
  • 英文作者:HUANG DaoQiong;WANG Zhen;DU DaHua;National Key Laboratory of Science and Technology on LRE;College of Aeronautics, Northwestern Polytechnical University;
  • 关键词:大推力液体火箭发动机 ; 多场耦合 ; 动力学建模 ; 载荷识别 ; 动力学设计
  • 英文关键词:Large thrust liquid propellant rocket engine;;multi-filed coupling;;dynamic modelling;;load identification;;dynamic design
  • 中文刊名:JGXK
  • 英文刊名:Scientia Sinica(Physica,Mechanica & Astronomica)
  • 机构:液体火箭发动机技术重点实验室;西北工业大学航空学院;
  • 出版日期:2019-02-01
  • 出版单位:中国科学:物理学 力学 天文学
  • 年:2019
  • 期:v.49
  • 基金:装备预研共用技术项目(编号:41410040202);; 国家重点基础研究发展计划(编号:613321)资助
  • 语种:中文;
  • 页:JGXK201902003
  • 页数:12
  • CN:02
  • ISSN:11-5848/N
  • 分类号:23-34
摘要
大推力液体火箭发动机是载人登月、深空探测等重大航天活动的主动力形式,发动机推力愈大,结构动强度设计面临的挑战愈大,动力学成为解决大推力发动机研制中关键技术问题的基础学科.大推力发动机多场耦合作用显著,多源载荷成分复杂,导致了大推力发动机结构动力学问题的复杂性,解决难度大.本文在总结国内外液体火箭发动机结构故障特征的基础上,重点讨论了大推力发动机涡轮泵结构中的转子动力学和流体激振问题、管路流固耦合及动力学优化问题、推力室结构中的动力学问题及其研究的经验和需求,并介绍了发动机整机结构动力学建模和载荷传递特性分析面临的问题.最后从设计角度出发总结了结构动力学分析中需要关注的试验技术和涉及不确定性的边界包络设计思想,为解决大推力发动机结构动力学问题提供技术借鉴.
        The large thrust liquid rocket engines are the main powers for the momentous space activities of manned lunar and deep space exploration. As the thrust of the engine being larger, the challenges for the dynamic strength designing being tougher and the structural dynamic becomes a fundamental science for solving the key technology problems during the engine developing. The characteristics of the significant multi-field coupling and the complex load composition of multi load sources lead the complexity and difficulty for solving structural dynamic problems of the large thrust engines increase dramatically. Based on the review and summary of the fault characteristics of the domestic and foreign liquid rocket engine structures, the rotor dynamics and flow-induced vibration problems of the turbopump, the fluid-structure interaction and dynamic optimization problems, the dynamics problems in thrust chamber and associated solving experiences were discussed emphatically, and also the structural dynamic modeling of the whole engine and the analysis of the load transfer path being introduced. Finally, the structural dynamics analysis required test technologies and associated uncertainties envelope design methodology were presented from a design perspective, and these will be useful and consulted to solve the key technology encountered in the development of the large liquid rocket engine.
引文
1 Tan Y H.Research on large thrust liquid rocket engine(in Chinese).J Astron,2013,34:1303-1308[谭永华.大推力液体火箭发动机研究.宇航学报,2013,34:1303-1308]
    2 Zheng D Y,Tao R F,Zhang X,et al.Study on key technology for large thrust LOX/LH2rocket engine(in Chinese).J Rocket Propul,2014,40:22-27,3[郑大勇,陶瑞峰,张玺,等.大推力氢氧发动机关键技术及解决途径.火箭推进,2014,40:22-27,3]
    3 Li B,Zhang X P,Gao Y S.Consideration on development of reusable liquid rocket engine in China(in Chinese).J Rocket Propul,2017,43:1-75[李斌,张小平,高玉闪.我国可重复使用液体火箭发动机发展的思考.火箭推进,2017,43:1-75]
    4 Li B,Ding F N,Zhang X P.Manned Lunar Propulsion System(in Chinese).Beijing:China Astronautic Publishing House,2011[李斌,丁丰年,张小平.载人登月推进系统.北京:中国宇航出版社,2011]
    5 Liu S J,Liang G Z.Failure modes of space main engine high-pressure fuel turbpump(in Chinese).J Aerosp Power,2015,30:611-626[刘士杰,梁国柱.航天飞机主发动机高压燃料涡轮泵的故障模式.航空动力学报,2015,30:611-626]
    6 Yin Q,Zhang J R.Failure mode and analysis for liquid propellant rocket engines(in Chinese).J Propul Tech,1997,18:22-25[殷谦,张金容.液体火箭发动机故障模式及分析.推进技术,1997,18:22-25]
    7 Ryan R S.A history of aerospace problems,their solution,their lessons.NASA-TP-3653,1996
    8 Fukushima Y,Imoto T.Lessons learned in the development of the LE-5 and LE-7.AIAA-94-3375,1994
    9 Xie G J.Research on real-time fault detection technology and system for liquid rocket engine trubopump(in Chinese).Dissertation of Doctoral Degree.Changsha:National University of Defense Technology,2006[谢光军.液体火箭发动机涡轮泵实时故障检测技术及系统研究.博士学位论文.长沙:国防科学技术大学,2006]
    10 Cikanek H A.Characteristics of space shuttle main engine failures.AIAA-87-1939,1987
    11 Cervone A,Torre L,Bramanti C,et al.Experimental characterization of cavitation instabilities in the Avio“FAST2”inducer.AIAA 2005-4451,2005
    12 Bai D A.A review of the rocket engines of China long march family of launch vehicle(in Chinese).J Rocket Propul,2000,2:1-10[白东安.长征系列发动机涡轮泵的研制概况.火箭推进,2000,2:1-10]
    13 Sutton G P.Turbopumps,a historical perspective.AIAA 2006-5033,2006
    14 Durteste S.A transient model of the VINCI cryogenic upper stage rocket engine.AIAA-2007-5531,2007
    15 Li H B.Space launch vehicle reliability in the world for fifty years(in Chinese).Struct Environ Eng,2007,34:1-11[李海波.50年来全球航天运载器的可靠性.强度与环境,2007,34:1-11]
    16 Tan S L,Li B S.Reliability of Liquid Rocket Engine(in Chinese).Beijing:China Astronautic Publishing House,2014[谭松林,李宝盛.液体火箭发动机可靠性.北京:中国宇航出版社,2014]
    17 Hou J L,Jin P,Cai G B.Failure mode of reusable rocket engine based on fuzzy fault tree and factor analysis(in Chinese).J Aerosp Power,2014,29:987-992[侯金丽,金平,蔡国飙.基于模糊故障树和因子化分析的重复使用火箭发动机失效模式.航空动力学报,2014,29:987-992]
    18 Gurov V.Operational reliability of turbopump-Key unit of the liquid rocket engines.AIAA 2001-3395,2001
    19 Huzel D K,Huang D H.Modern Engineering for Design of Liquid-propellant Rocket Engines.Washington:AIAA,1992
    20 Cai G B,Li J W,Tian A M,et al.Design of Liquid-Propellant Rocket Engine(in Chinese).Beijing:Beihang University Press,2000[蔡国飙,李家文,田爱梅,等.液体火箭发动机设计.北京:北京航空航天大学出版社,2000]
    21 Blair J C,Ryan R S,Schutzenhofer L A.Lessons learned in engineering.NASA/CR-2011-216468,2011
    22 Adams M L.Rotating Machinery Vibration-from Analysis to Troubleshooting.New York:Marcel Dekker,2001
    23 Campbell W.The protection of steam turbine disc wheels from axial vibration.Trans ASME,1924,46:31-160
    24 Singh M P,Drosjack M J.Emerging advanced technologies to assess reliability of industrial steam turbine blade design.In:37th Turbomachinery Symposium,Texas A&M University,Tutorial T37-T03,2008
    25 Huang W H.Free and forced vibration of closely coupled turbomachinery blades.AIAA 80-0700,1980
    26 Hah C,Loellbach J,Owen A,et al.Unsteady flow analysis of RLV pump stage at design and off-design conditions.AIAA 2001-3477,2001
    27 Brown A M,Schmauch P.Characterization of deficiencies in the frequency domain forced response analysis technique for supersonic turbine bladed disks.AIAA-2012-1397,2012
    28 Yamanishi N,Nishimoto M,Hori S,et al.Numerical analysis of flow-induced structural vibration in the LE-7A liquid hydrogen pump.AIAA-2008-4658,2008
    29 Brown A M.Comprehensive Structural dynamic analysis of the SSME/AT fuel pump first-stage turbine blade.NASA/TM-1998-208594,1998
    30 Sipatov A M,Gladisheva N V,Avgustinovich V G.Tools for estimating resonant stresses in turbine blades.In:Proceedings of GT2007 ASMETurbo Expo 2007:Power for Land,Sea and Air,GT2007-27196
    31 Uchiumi M,Kamijo K,Sakazume N,et al.Fatigue strength of rocket pump inducers.AIAA-2006-5072,2006
    32 Johnsson R,Brodin S,Ekedahl P,et al.Development of hydrogen and oxygen pump turbines for Vinci engine.AIAA-2002-4331,2002
    33 Holmedahl K.Analysis and testing of the Vulcain 2 LOX turbine blades for prediction of high cycle fatigue life.AIAA-2000-3680,2000
    34 Li S T,Xu Q Y.Fluid induced vibration and dynamic fatigue in centrifugal impeller(in Chinese).Chin J Appl Mech,2007,24:353-358[李松涛,许庆余.离心式叶轮流体激振响应及动态疲劳的研究.应用力学学报,2007,24:353-358]
    35 MSC Software Corporation.MSC Fatigue 2016 Theory Guide.2016
    36 Zemp A.Experimental Investigation and Validation of High Cycle Fatigue Design Systems for Centrifugal Compressors.Lucerne:ETH Zurich,2012
    37 Moffatt S,Ning W,Li Y,et al.Blade forced response prediction for industrial gas turbines.J Propulsion Power,2005,21:707-714
    38 Brown A M,DeHaye M,DeLessio S.Probabilistic methods to determine resonance risk and damping for rocket turbine blades.J Propulsion Power,2013,29:1367-1373
    39 Christensen E R.Structural dynamic analysis of cyclic symmetric structures.AIAA-2005-1865,2005
    40 Marcu B,Hadid A,Lin P,et al.Towards rocket engine components with increased strength and robust operating characteristics.AIAA-2005-4449,2005
    41 Marcu B,Tran K,Dorney D J,et al.Turbine design and analysis for the J-2X engine turbopump.AIAA-2008-4660,2008
    42 Zhu M L.Near-threshold fatigue crack growth and very high cycle fatigue behavior of steam turbine rotor steels(in Chinese).Dissertation of Doctoral Degree.Shanghai:East China University of Science and Technology,2011[朱明亮.汽轮机转子钢近门槛值区的裂纹扩展与超高周疲劳行为研究.博士学位论文.上海:华东理工大学,2011]
    43 Kazymyrovych V.Very high cycle fatigue of engineering materials(a literature review).Karlstad University,2009
    44 Zhu N C.Design of Liquid-Propellant Rocket Engine(in Chinese).Beijing:China Astronautic Publishing House,1994[朱宁昌.液体火箭发动机设计.北京:宇航出版社,1994]
    45 Yan S,Tan Y H,Chen J H.Research progress of flow-induced vibration of bellows(in Chinese).J Rocket Propul,2014,40:16-21[闫松,谭永华,陈建华.波纹管流体诱导振动研究进展.火箭推进,2014,40:16-21]
    46 Ye Z Y,LüG L.Advances in the study of unsteady side-loads and fluid/structure innteraction of rocket nozzles(in Chinese).Adv Aeronaut Sci Eng,2015,6:1-12[叶正寅,吕广亮.火箭发动机喷管非定常侧向力和流固耦合研究进展.航空工程进展,2015,6:1-12]
    47 Ruf J H,McDaniels D M,Brown A M.Nozzle side load testing and analysis at Marshall Space Flight Center.AIAA-2009-4856,2009
    48 Watanabe Y,Sakazume N,Tsuboi M.LE-7A engine nozzle problems during the transient operations.AIAA-2002-3841,2002
    49 Smalley K B,Brown A M,Ruf J.Flow separation side loads excitation of rocket nozzle FEM.AIAA-2007-2242,2007
    50 Terhardt M,Hagemann G,Frey M.Flow separation and side-load behavior of truncated ideal rocket nozzles.AIAA-2001-3686,2001
    51 de Cock K M,Kok J C,van der Ven H,et al.Extra-large eddy simulation for delta wings and space launchers.In:24th International Congress of the aeronautical Sciences.Yokohama,2004
    52 Brown A M,Ruf J,Reed D,et al.Characterization of side load phenomena using measurement of fluid/structure interaction.AIAA-2002-3999,2002
    53 Wang T S,Zhao X,Zhang S,et al.Development of an aerostatic modeling capability for transient nozzle side load analysis.AIAA-2013-3641,2013
    54 Cheng L.The Theory and Application of Elastic Heat Exchanger(in Chinese).Beijing:Science Press,2001[程林.弹性管束换热器原理与应用.北京:科学出版社,2001]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700