不同水胶比及养护条件对内养护混凝土吸水性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influences of water-to-cement ratio and curing condition on water absorption of internal curing concrete
  • 作者:罗大明 ; 牛荻涛
  • 英文作者:LUO Daming;NIU Ditao;State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology;School of Civil Engineering, Xi'an University of Architecture and Technology;
  • 关键词:内养护混凝土 ; 水胶比 ; 养护条件 ; 毛细吸水试验 ; 累积吸水量 ; 吸水率 ; 毛细作用
  • 英文关键词:internal curing concrete;;water-to-cement ratio;;curing condition;;capillary water absorption test;;cumulative water absorption;;absorptivity;;capillary effect
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:西安建筑科技大学省部共建西部绿色建筑国家重点实验室;西安建筑科技大学土木工程学院;
  • 出版日期:2018-10-24 10:13
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51808438);; 陕西省教育厅重点实验室科研计划项目(16JS056);; 陕西省自然科学基础研究计划项目(2017JQ5103);; 陕西省高校科协青年人才托举计划项目(20160118)
  • 语种:中文;
  • 页:JZJB201901021
  • 页数:9
  • CN:01
  • ISSN:11-1931/TU
  • 分类号:169-177
摘要
为了研究预湿轻骨料的内养护效率受混凝土自身水胶比和外界养护条件的影响,采用改进的ASTM 1585试验方法,开展了不同水胶比、不同养护条件(饱和石灰水养护、喷雾养护、密封养护、干燥养护)下普通混凝土及内养护混凝土毛细吸水试验。从混凝土的水化程度、混凝土孔隙率等角度,解释了水胶比、养护条件以及内养护材料对混凝土中水分传输的影响。结果表明:水胶比、养护条件以及内养护材料的掺入对混凝土中水泥的水化和混凝土材料的孔隙率有较大影响。高水胶比试件比低水胶比试件具有更大的累积吸水量及二次吸水率,水胶比为0.5的试件的累积吸水量及二次吸水率分别为水胶比为0.3的试件的1.4~2.1倍和3~4倍;预湿轻骨料的掺入对高水胶比试件的累积吸水量、初始吸水率和二次吸水率的改善作用并不明显,但可以显著降低低水胶比试件的吸水能力,对于水胶比为0.3的试件,其累积吸水量和二次吸水量的降低幅度分别为7.7%~18.6%和20.4%~27.4%;随着外界养护环境湿度的降低,低水胶比试件的初始吸水率变化较小,累积吸水量和二次吸水率有轻微的上升;预湿轻骨料在低水胶比、密封养护条件下内养护效率较高。
        In order to study the influences of water-to-cement ratio and curing condition on internal curing efficiency of pre-wet lightweight aggregates, the capillary water absorption tests of ordinary concrete and internal curing concrete with different water-to-cement ratios under different curing conditions(i.e. saturated lime water curing, moist curing, sealed curing and drying) were carried out by using the improved ASTM 1585 test method. Besides, the influences of water-to-cement ratio, curing condition and internal curing material on moisture transport in concrete were explained by taking the degree of hydration and porosity of concrete into consideration. The results show that the water-to-cement ratio, curing condition and the internal curing material have great influence on the hydration and porosity of concrete. Concrete with a high water-to-cement ratio has greater cumulative absorbed water and secondary sorptivity than that with a low water-to-cement ratio. The cumulative absorbed water and secondary sorptivity of the concrete with a water-to-cement ratio of 0.5 are 1.4-2.1 times and 3-4 times of those with a water-to-cement ratio of 0.3, respectively. Although the use of pre-wet lightweight aggregates has little internal curing effect on the cumulative absorbed water, initial sorptivity and secondary sorptivity of concrete with a high water-to-cement ratio, it can significantly reduce the absorptivity of concrete with a low water-to-cement ratio. For the concrete with a water-to-cement ratio of 0.3, the decrease of cumulative absorbed water and secondary sorptivity range from 7.7%-18.6% and 20.4%-27.4%, respectively. With the decrease of external environmental humidity, the change of the initial sorptivity of concrete with a low water-to-cement ratio is small, but the cumulative absorbed water and secondary sorptivity increase slightly. The curing efficiency of the pre-wet lightweight aggregates is higher when used with a low water-to-cement ratio and under the sealed curing condition.
引文
[1] GAGNE R, POPIC A, PIGEON M. Effects of water absorption on performance of concretes subjected to accelerated freezing-and-thawing tests[J]. ACI Materials Journal, 2003, 100(4): 286-293.
    [2] HENKENSIEFKEN R, CASTRO J, BENTZ D, et al. Water absorption in internally cured mortar made with water-filled lightweight aggregate[J]. Cement and Concrete Research, 2009, 39(10): 883-892.
    [3] NEITHALATH N. Analysis of moisture transport in mortars and concrete using sorption-diffusion approach[J]. ACI Materials Journal, 2006, 103(3): 209-217.
    [4] BENTZ D P, EHLEN M A, FERRARIS C F, et al. Sorptivity-based service life predictions for concrete pavements[C]//Proceedings of the 7th International Conference on Concrete Pavements. Orlando, FL: National Institute of Standards and Technology, 2001: 181-193.
    [5] WEISS W J. Prediction of early-age shrinkage cracking in concrete elements[D].Evanston, IL: Northwestern University, 1999.
    [6] CUSSON D, LOUNIS Z, DAIGLE L. Benefits of internal curing on service life and life-cycle cost of high-performance concrete bridge decks: a case study[J]. Cement and Concrete Composites, 2010, 32(5): 339-350.
    [7] MUN K J. Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete[J]. Construction and Building Materials, 2007, 21(7): 1583-1588.
    [8] DEMIRDAG S, GUNDUZ L. Strength properties of volcanic slag aggregate lightweight concrete for high performance masonry units[J]. Construction and Building Materials, 2008, 22(3): 135-142.
    [9] 朱春生,刘巽伯. 粉煤灰陶粒混凝土的抗渗性[C]//第四届全国轻骨料及轻骨料混凝土学术讨论会论文集. 沈阳:《建筑节能》杂志社,1994: 117-122.
    [10] CHIA K S, ZHANG M. Water permeability and chloride penetrability of high-strength lightweight aggregate concrete[J]. Cement and Concrete Research, 2002, 32(4): 639- 645.
    [11] 孙德强,丁建彤,郭玉顺. 普通混凝土与采用不同陶粒的轻质混凝土的水渗性和氯离子渗透性比较[J]. 混凝土, 2005(2): 36-38.(SUN Deqiang, DING Jiantong, GUO Yushun.Comparison of water permeability and chloride penetrability between normal-weight concrete and lightweight concrete made with different lightweight aggregates[J].Concrete, 2005, (2): 36-38.(in Chinese))
    [12] TASDEMIR C. Combined effects of mineral admixtures and curing conditions on the sorptivity coefficient of concrete[J]. Cement and Concrete Research, 2003, 33(10): 1637-1642.
    [13] HALL C. Water sorptivity of mortars and concretes: a review[J]. Magazine of Concrete Research, 1989, 41(147): 51- 61.
    [14] HOOTON R D, MESIC T, BEAL D L. Sorptivity testing of concrete as an indicator of concrete durability and curing efficiency[C]//Proceedings of the Third Canadian Symposium on Cement and Concrete. Ottawa, Ontario:[s.n.], 1993: 264-275.
    [15] MARTYS N S, Ferraris C F. Capillary transport in mortars and concrete[J]. Cement and Concrete Research, 1997, 27(5): 747-760.
    [16] ASTM International. Standard specification for portland cement: ASTM C150/C150M-18[S]. West Conshohocken, PA: ASTM International, 2018.
    [17] CASTRO J, KEISER L, GOLIAS M, et al. Absorption and desorption properties of fine lightweight aggregate for application to internally cured concrete mixtures[J]. Cement and Concrete Composites, 2011, 33(10): 1001-1008.
    [18] BENTZ D P, LURA P, ROBERTS J W. Mixture proportioning for internal curing[J]. Concrete International, 2005, 27(2): 35- 40.
    [19] ASTM International. Standard practice for making and curing concrete test specimens in the laboratory: ASTM C192/C192M-16a[S]. West Conshohocken, PA: ASTM International, 2016.
    [20] ESCALANTE-GARCIA J I. Non-evaporable water from neat OPC and replacement materials in composite cements hydrated at different temperatures[J]. Cement and Concrete Research, 2003, 33(11): 1883-1888.
    [21] ASTM International. Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes: ASTM C1585-13[S]. West Conshohocken, PA: ASTM International, 2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700