高比表面积二氧化锆的合成及其催化应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of high-surface-area ZrO_2 and its application in catalysis
  • 作者:朱杰 ; 李文慧 ; 刘邦荐 ; 慕旻辰 ; 郭新闻
  • 英文作者:ZHU Jie;LI Wenhui;LIU Bangjian;MU Minchen;GUO Xinwen;State Key Laboratory of Fine Chemicals,PSU-DUT Joint Center for Energy Research,School of Chemical Engineering,Dalian University of Technology;
  • 关键词:二氧化锆 ; 比表面积 ; 催化 ; 多孔材料 ; 纳米材料
  • 英文关键词:zirconium dioxide(ZrO2);;specific surface area;;catalysis;;porous materials;;nanomaterials
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:大连理工大学化工学院宾州-大连联合能源研究中心精细化工国家重点实验室;
  • 出版日期:2019-01-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家重点研发计划(2016YFB0600902-5)
  • 语种:中文;
  • 页:HGJZ201901027
  • 页数:9
  • CN:01
  • ISSN:11-1954/TQ
  • 分类号:322-330
摘要
二氧化锆(ZrO_2)是一种优异的催化材料,同时具有表面酸碱性,易产生氧空位,耐高温、抗腐蚀,机械强度高。然而传统方法合成的二氧化锆比表面积和孔容较小,限制了其应用。本文介绍了近年来高比表面积多孔二氧化锆的合成方法和技术,包括模板法、MOF热解法、静电纺丝等以及提高其热稳定性的措施,同时简述了其在催化领域的应用。研究表明,此类高比表面积的二氧化锆可以提高负载金属分散度,加强金属-载体相互作用,进而提高催化剂活性和稳定性,同时其粒径大小、形貌、孔结构均会影响其催化性能。高效低成本合成热稳定的高比表面积二氧化锆并对对其形貌和结构进行精准调控,将使其未来具有更广的催化应用前景。
        Zirconium dioxide(ZrO_2) is an excellent catalytic material, due to its high-temperature resistance, corrosion resistance and high mechanical strength. Besides, it has both acid and basic sites onthe surface and is able to produce oxygen vacancy. However, ZrO_2 prepared by conventional methods haslow surface area and pore volume, which may limit its broad applications. The recent preparation methodsor techniques of high-surface-area ZrO_2, including templating methods, MOF pyrolysis, and electrostaticspinning,so as to improve its thermal stability and to extend its applications in catalysis are reviewed. Thestudies showed that the porous ZrO_2 can improve the dispersion of the supported metal and the metal-support interaction, giving rise to the enhanced activity and stability of the catalysts. Meanwhile, its particle size, morphology and pore structure also have effects on the catalytic performance. The high-efficient and low-cost preparation methods of thermal stable high-surface-area ZrO_2, and the accurate regulation of its morphology or structure, will give it a broader catalytic application prospect in the future.
引文
[1] KARWACKI C J, GANESH P, KENT P R C, et al. Structure-activity relationship of Au/ZrO2catalyst on formation of hydroxylgroups and its influence on CO oxidation[J]. Journal of MaterialsChemistry A, 2013, 1(19):6051-6062.
    [2] LIU Y C, FANG K G, CHEN J G, et al. Effect of pore size on theperformance of mesoporous zirconia-supported cobalt Fischer-Tropsch catalysts[J]. Green Chem., 2007, 9(6):611-615.
    [3] LI W H, NIE X W, JIANG X, et al. ZrO2support imparts superioractivity and stability of Co catalysts for CO2methanation[J].Applied Catalysis B:Environmental, 2018, 220:397-408.
    [4] ZHANG X P, ZHANG Q D, TSUBAKI N, et al. Carbon dioxidereforming of methane over Ni nanoparticles incorporated intomesoporous amorphous ZrO2matrix[J]. Fuel, 2015, 147:243-252.
    [5] OTROSHCHENKO T, SOKOLOV S, STOYANOVA M, et al.ZrO2-based alternatives to conventional propane dehydrogenationcatalysts:active sites, design, and performance[J]. Angew. Chem.Int. Ed., 2015, 54(52):15880-15883.
    [6] SHUKLA S, SEAL S. Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia[J]. InternationalMaterials Reviews, 2013, 50(1):45-64.
    [7] GARVLE R C. Stabilization of the tetragonal structure in zirconiamicrocrystals[J]. The Journal of Physical Chemistry, 1978, 82:218-224.
    [8] PARK J N, NOH J, CHANG J S, et al. Ethylbenzene to styrene inthe presence of carbon dioxide over zirconia[J]. Catalysis Letters,2000, 65:75-78.
    [9] MA Z Y, YANG C, WEI W, et al. Catalytic performance of coppersupported on zirconia polymorphs for CO hydrogenation[J].Journal of Molecular Catalysis A:Chemical, 2005, 231(1/2):75-81.
    [10] LIU Y D, GOEBL J, YIN Y D. Templated synthesis ofnanostructured materials[J]. Chem. Soc. Rev., 2013, 42(7):2610-2653.
    [11] YUAN Q, LI L L, LU S L, et al. Facile synthesis of Zr-basedfunctional materials with highly ordered mesoporous structures[J].The Journal of Physical Chemistry C, 2009, 113:4117-4124.
    [12] TSONCHEVA T, IVANOVA L, PANEVA D, et al. Cobalt and ironoxide modified mesoporous zirconia:preparation, characterizationand catalytic behaviour in methanol conversion[J]. Microporousand Mesoporous Materials, 2009, 120(3):389-396.
    [13] CHANG Y L, WANG C, LIANG T X, et al. Sol-gel synthesis ofmesoporous spherical zirconia[J]. RSC Advances, 2015, 5(127):104629-104634.
    [14] DAS S K, BHUNIA M K, SINHA A K, et al. Self-assembledmesoporous zirconia and sulfated zirconia nanoparticlessynthesized by triblock copolymer as template[J]. The Journal ofPhysical Chemistry C, 2009, 113:8918-8923.
    [15] GONG L, SUN L B, SUN Y H, et al. Exploring in situ functionalization strategy in a hard template process:preparationof sodium-modified mesoporous tetragonal zirconia withsuperbasicity[J]. The Journal of Physical Chemistry C, 2011, 115(23):11633-11640.
    [16] GU D, SCHMIDT W, PICHLER C M, et al. Surface-castingsynthesis of mesoporous zirconia with a CMK-5-like structureand high surface area[J]. Angew. Chem. Int. Ed., 2017, 56(37):11222-11225.
    [17] XIAO W M, YANG S Z, ZHANG P F, et al. Facile synthesis ofhighly porous metal oxides by mechanochemical nanocasting[J].Chemistry of Materials, 2018, 30(9):2924-2929.
    [18] YAN X L, LU N Y, FAN B B, et al. Synthesis of mesoporous andtetragonal zirconia with inherited morphology from metal-organicframeworks[J]. CrystEngComm, 2015, 17(33):6426-6433.
    [19] YU Z C, LIU B X, ZHOU H F, et al. Mesoporous ZrO2fibers withenhanced surface area and the application as recyclable absorbent[J]. Applied Surface Science, 2017, 399:288-297.
    [20] YU G, ZHU L Y, ZHANG G L, et al. Preparation andcharacterization of the continuous titanium-doped ZrO2mesoporous fibers with large surface area[J]. Journal of PorousMaterials, 2013, 21(1):105-112.
    [21] SONG Y H, LI X, SUN L L, et al. Metal/metal oxide nanostructuresderived from metal-organic frameworks[J]. RSC Advances, 2015, 5(10):7267-7279.
    [22] PING D, DONG X F, ZANG Y H, et al. Highly efficient MOF-templated Ni catalyst towards CO selective methanation inhydrogen-rich reformate gases[J]. International Journal of Hydrogen Energy, 2017, 42(23):15551-15556.
    [23] LIPPI R, HOWARD S C, BARRON H, et al. Highly activecatalyst for CO2methanation derived from a metal organicframework template[J]. Journal of Materials Chemistry A, 2017, 5(25):12990-12997.
    [24] D’SOUZA L, SUCHOPAR A, ZHU K, et al. Preparation ofthermally stable high surface area mesoporous tetragonal ZrO2andPt/ZrO2:an active hydrogenation catalyst[J]. Microporous andMesoporous Materials, 2006, 88(1/2/3):22-30.
    [25] DESHMANE V G, ADEWUYI Y G. Synthesis of thermally stable,high surface area, nanocrystalline mesoporous tetragonalzirconium dioxide(ZrO2):effects of different process parameters[J]. Microporous and Mesoporous Materials, 2012, 148(1):88-100.
    [26]尹双凤,徐柏庆.碱液回流老化制备高比表面积二氧化锆[J].催化学报,2002,23(3):214-218.YIN S F, XU B Q. Preparation of high surface area zirconia byreflux digestion in basic solutions[J]. Chinese Journal of Catalysis,2002, 23(3):214-218.
    [27] WANG P Y, UENO K, TAKIGAWA H, et al. Versatility of one-pot, single-step synthetic approach for spherical porous(metal)oxide nanoparticles using supercritical alcohols[J]. The Journal ofSupercritical Fluids, 2013, 78:124-131.
    [28]石国亮,于峰,王琰,等.溶剂辅助超细二氧化锆纳米晶体的可控合成[J].化工进展,2016,35(8):2518-2522.SHI G L, YU F, WANG Y, et al. Solvent-assisted controllablesynthesis of ultrafine zirconia nanocrystals[J]. Chemical Industryand Engineering Progress, 2016, 35(8):2518-2522.
    [29] ZINK N, EMMERLING F, H?GER T, et al. Low temperaturesynthesis of monodisperse nanoscaled ZrO2with a large specificsurface area[J]. Dalton Trans., 2013, 42(2):432-440.
    [30] GU D, SCHUTH F. Synthesis of non-siliceous mesoporous oxides[J]. Chem. Soc. Rev., 2014, 43(1):313-344.
    [31] CHEN H R, SHI J L, YU J, et al. Synthesis of titanium-dopedordered porous zirconium oxide with high-surface-area[J].Microporous and Mesoporous Materials, 2000, 39:171-176.
    [32] LIU S G, MA J, GUAN L X, et al. Mesoporous CaO-ZrO2nano-oxides:a novel solid base with high activity and stability[J].Microporous and Mesoporous Materials, 2009, 117:466-471.
    [33] CIESLA U, FR?BA M, STUCKY G, et al. Highly ordered porouszirconias from surfactant-controlled synthesis:zirconium oxide-sulfate and zirconium oxo phosphate[J]. Chem. Mater., 1999, 11:227-234.
    [34] CHEN S Y, JANG L Y, CHENG S. Synthesis of thermally stablezirconia-based mesoporous materials via a facile post-treatment[J]. J. Phys. Chem. B, 2660,110:11761-11771.
    [35] LIU B, BAKER R T. Factors affecting the preparation of orderedmesoporous ZrO2using the replica method[J]. Journal of MaterialsChemistry, 2008, 18(43):5200-5207.
    [36] LYU Y Y, YI S H, SHON J K, et al. Highly stable mesoporousmetal oxides using nano-propping hybrid gemini surfactant[J]. J.Am. Chem. Soc., 2004, 126:2310-2311.
    [37] CIESLA U, SCHACHT S, STUCKY G, et al. Formation of a porouszirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis[J]. Angew. Chem. Int. Ed.,1996,35:541-543.
    [38] AKUNE T, MORITA Y, SHIRAKAWA S, et al. ZrO2nanocrystalsas catalyst for synthesis of dimethylcarbonate from methanol andcarbon dioxide:catalytic activity and elucidation of active sites[J].Langmuir, 2018, 34(1):23-29.
    [39] LAOSIRIPOJANA N, KIATKITTIPONG W, ASSABUMRUNGRATS. Partial oxidation of palm fatty acids over Ce-ZrO2:roles ofcatalyst surface area, lattice oxygen capacity and mobility[J].AIChE Journal, 2011, 57(10):2861-2869.
    [40] SAKITANI K, NAKAMURA K I, IKENAGA N O, et al. Oxidativedehydrogenation of ethane over NiO-loaded high surface areaZrO2catalysts[J]. Journal of the Japan Petroleum Institute, 2010,53(6):327-335.
    [41] WANG Z Q, MA Y C, LIN J X. Ruthenium catalyst supported onhigh-surface-area basic ZrO2for ammonia synthesis[J]. Journal ofMolecular Catalysis A:Chemical, 2013, 378:307-313.
    [42] CHEN H, WU Y L, QI S T, et al. Deoxygenation of octanoic acidcatalyzed by hollow spherical Ni/ZrO2[J]. Applied Catalysis A:General, 2017, 529:79-90.
    [43] WANG H Q, CHEN H, NI B, et al. Mesoporous ZrO2nanoframesfor biomass upgrading[J]. ACS Appl. Mater. Interfaces., 2017, 9(32):26897-26906.
    [44] AN K, ALAYOGLU S, MUSSELWHITE N, et al. Designedcatalysts from Pt nanoparticles supported on macroporous oxidesfor selective isomerization of n-hexane[J]. J. Am. Chem. Soc.,2014, 136(19):6830-6833.
    [45] YANG L P, LIN X J, ZHANG X, et al. General synthetic strategyfor hollow hybrid microspheres through a progressive inwardcrystallization process[J]. J. Am. Chem. Soc., 2016, 138(18):5916-5922.
    [46] JIN Z, WANG F, WANG F, et al. Metal nanocrystal-embeddedhollow mesoporous TiO2and ZrO2microspheres prepared withpolystyrene nanospheres as carriers and templates[J]. AdvancedFunctional Materials, 2013, 23(17):2137-2144.
    [47] JOO J B, VU A, ZHANG Q, et al. A sulfated ZrO2hollownanostructure as an acid catalyst in the dehydration of fructose to5-hydroxymethylfurfural[J]. ChemSusChem, 2013, 6(10):2001-2008.
    [48] HUANG X Q, GUO C Y, ZUO J Q, et al. An assembly route toinorganic catalytic nanoreactors containing sub-10-nm goldnanoparticles with anti-aggregation properties[J]. Small, 2009, 5(3):361-365.
    [49] SHUKLA A, SINGHA R K, SENGUPTA M, et al. Surfactant-induced preparation of highly dispersed Ni-nanoparticlessupported on nanocrystalline ZrO2for chemoselective reduction ofnitroarenes[J]. Chemistry Select, 2018, 3(4):1129-1141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700