天荒坪抽水蓄能电站水位变化对水体营养状态的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Water Level Fluctuation on Eutrophication in Tianhuangping Pumped Storage Reservoir
  • 作者:俞焰 ; 杨正健 ; 张佳磊 ; 刘德富 ; 贡丹丹
  • 英文作者:YU Yan;YANG Zheng-jian;ZHANG Jia-lei;LIU De-fu;GONG Dan-dan;Water Resources and Environment College of Three Gorges University;Resource and Environmental Engineering of Hubei University of Technology;Hubei Key Laboratory of Ecological Restoration of Rivers and Lakes and Algae Use;
  • 关键词:抽水蓄能电站 ; 营养状态 ; 水位变化 ; 天荒坪
  • 英文关键词:pumped storage station;;eutrophication;;water level change;;Tianhuangping
  • 中文刊名:SCAN
  • 英文刊名:Journal of Hydroecology
  • 机构:三峡大学水利与环境学院;湖北工业大学资源与环境工程学院;河湖生态修复与藻类利用湖北省重点实验室;
  • 出版日期:2016-11-15
  • 出版单位:水生态学杂志
  • 年:2016
  • 期:v.37
  • 基金:三峡水库浮游植物生境演变机制及水华预测预报计划研究项目(2014CB460601);; 科技部2014年国际科技合作与交流专项-河道型水库水华机理及防控技术合作研究(2014DFE70070);; 三峡大学学校资助项目-抽水蓄能电站水库水质富营养化现状及形成机制研究(2015CX012)
  • 语种:中文;
  • 页:SCAN201606010
  • 页数:8
  • CN:06
  • ISSN:42-1785/X
  • 分类号:71-78
摘要
为了探究抽水蓄能电站水位波动、营养物质时空分布以及浮游植物分布特性,分析水体营养状态及其成因,为后期控制水体富营养化提供指导。2014-2015年在浙江天荒坪抽水蓄能电站的上水库(S1)和下水库(S3-S4)设置4个采样点,获取相关的监测点数据,分析了水库水位、水体稳定性、营养盐以及叶绿素a的分布规律,讨论了水库水位剧烈波动对水体稳定、营养盐以及叶绿素a浓度的影响。结果表明:(1)天荒坪抽水蓄能电站水库水体稳定性较小,各监测点浮点频率均在0.2×10~(-4)s~(-2)以下。总氮、溶解性硅酸盐浓度较高,总氮范围在1.8~2.8 mg/L,已达到Ⅴ类水标准;硅酸盐浓度为3.30~8.00 mg/L;叶绿素a浓度较低,为1.60~6.24μg/L;(2)抽水蓄能电站水库水位频繁波动致使水体垂向掺混加强,混合层增大,水体在上、下库内滞留时间减短,致使游植物生长受到抑制,水体中叶绿素a浓度降低。大幅度水体交换、冲洗造成营养物质在一定程度上被稀释;(3)天荒坪抽水蓄能电站水库处于中营养状态,各监测点富营养化指数在30~40。总氮对水体富营养化贡献最大,基准指标叶绿素a贡献反而较小。抽水蓄能电站频繁水位波动稀释了水体中的营养物质,并限制了浮游植物的生长,减轻了水库的富营养化程度。
        Pumped storage technology has been well developed in China since the sixties,but the water environment of pumped storage reservoirs has drawn little attention. Here,we present a case study on the relationship of water level fluctuation to spatial and temporal distribution of nutrients and phytoplankton in the Tianhuangping pumped storage reservoir. The goals were to assess the trophic state and causative factors in the pumped storage reservoirs and provide theoretical guidance for water quality management. Tianhuangping pumped storage station is located in Anji County,Huzhou City,Zhejiang Province. Under normal operation,there are three patterns of water regulation at Tianhuangping:( 1) water storage in the upper reservoir at night with rising water levels and power generation during the day with falling water levels;( 2) no water storage at night and power generation during the day;( 3) no water level fluctuation between the upper and lower reservoirs. Water monitoring was carried out at four sampling sites in the Tianhuangping reservoirs( S1 in the upper reservoir and S2- S4 in the lower reservoir)on four dates; September 28( pattern 1 water regulation),October 9( pattern 3) and November 9( pattern 2) of2014,January 27( Pattern 1) and April 23( Pattern 1) of 2015. Parameters measured included diel water level fluctuation in the upper and lower reservoirs,water stability,CODMn,Secchi depth,nutrients( TN,TP),and chlorophyll-a( Chl-a). The influence of reservoir water level fluctuation on water stability,nutrients and Chl-a was analyzed. Results show the following:( 1) Water stability in the Tianhuangping reservoirs is low,with the floating point frequency at all sampling stations < 0. 2 × 10~(- 4)s~(- 2). The concentrations of TN and D-Si were high; TN concentrations ranged from 1. 8 to 2. 8 mg/L,meeting only the Class V water standard,and D-Si concentrations ranged from 3. 30 to 8. 00 mg/L. Chl-a concentration was low,ranging from 1. 6 to 6. 24 μg/L.( 2) Frequent fluctuation of the water level strengthens vertical mixing,increases the mixed water layer depth and shortens water residence time. Intensive water exchange and flushing dilute nutrient concentrations,limiting the growth of phytoplankton and reducing Chl-a.( 3) The water in Tianhuangping reservoirs is mesotrophic,with the eutrophication index ranging from 30 to 40 at all sampling stations. TN has the greatest influence on eutrophication with a smaller contribution from Chl-a. Frequent fluctuation of the reservoir water level flushes the nutrients,inhibits phytoplankton growth,and reduces the degree of eutrophication in the reservoirs.
引文
崔继纯,刘殿海,梁维列,等,2007.抽水蓄能电站经济环保效益分析[J].中国电力,40(1):5-10.
    董红,1994.天荒坪抽水蓄能电站工程概述[J].水力发电,(4):9-10.
    国家环境保护总局,2002.水和废水监测分析方法[M]:北京:中国环境科学出版社.
    胡小冬,1995.广州抽水蓄能电站水库生态调查与水质初析[J].人民珠江,(4):39-42.
    姜作发,夏重志,2001.哈蟆通水库水位变化对浮游植物初级生产力及能量转化效率的影响[J].中国水产科学,8(4):23-26.
    金岗,王振堂,1992.环境生态学[M].北京:高等教育出版社.
    孔繁翔,高光,2005.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,25(3):589-595.
    李崇明,黄真理,张晟,等,2007.三峡水库藻类“水华”预测[J].长江流域资源与环境,16(1):1-6.
    李金荣,2001.天荒坪抽水蓄能电站上水库设计[J].水力发电,(6):22-24.
    李媛,刘德富,孔松,等,2012.三峡水库蓄泄水过程对香溪河库湾水华影响的对比分析[J].环境科学学报,32(8):1882-1893.
    刘洪波,朱梦羚,王精志,等,2013.水库水动力对水体富营养化影响[J].水资源与水工程学报,24(2):19-21.
    马耶,刘东,1996.波兰最大的赞诺威克抽水蓄能电站[J].水利水电快报,17(20):12-15.
    秦伯强,杨柳燕,陈非洲,等,2006.湖泊富营养化发生机制与控制技术及其应用[J].科学通报,51(16):1857-1866.
    施文超,2013.湖泊富营养化治理[A].第三届中国湖泊论坛暨第七届湖北科技论坛论文集[C].
    王旭,肖伟华,朱维耀,等,2012.洞庭湖水位变化对水质影响分析[J].南水北调与水利科技,10(5):59-62.
    王云中,杨成建,陈兴都,等,2011.不同水动力条件对景观水体富营养化模拟过程中藻类演替的影响[J].环境监测管理与技术,(2):23-27.
    杨正健,刘德富,马骏,等,2012.三峡水库香溪河库湾特殊水温分层对水华的影响[J].武汉大学学报:工学版,45(1):1-9.
    张静波,胡文修,1992.抽水蓄能电站的特殊环境影响[J].东北水利水电,(9):29-31.
    张运林,秦伯强,胡维平,等,2006.太湖典型湖区真光层深度的时空变化及其生态意义[J].中国科学(D辑):地球科学,36(3):287-296.
    郑丙辉,曹承进,秦延文,等,2008.三峡水库主要入库河流氮营养盐特征及其来源分析[J].环境科学,29(1):1
    郑丙辉,张远,富国,等,2006.三峡水库营养状态评价标准研究[J].环境科学学报,26(6):1022-1030.
    郑磊,杞桑,1996.广州抽水蓄能电站蓄水库蓄水初期浮游生物调查[J].生态科学,15(1):15-21.
    中华人民共和国水利部,2002.地表水环境质量标准[S].
    邹锐,周璟,孙永健,等,2012.垂向水动力扰动机的蓝藻控制效应数值实验研究[J].环境科学,33(5):1540-1549.
    Boehrer B,Schultze M,2008.Stratification of lakes[J].Reviews of Geophysics,46(2):1-28.
    Carpenter S R,Caraco N F,Correll D L,et al,1998.Nonpoint pollution of surface waters with phosphorus and nitrogen[J].Ecological Applications,8(3):559-568.
    Estrada M,Alcaraz M,Marrase C,1987.Effects of turbulence on the composition of phytoplankton assemblages in marine microcosms[J].Mar Ecol Prog Ser,38:267-281.
    Hudnell H K,2010.The state of US freshwater harmful algal blooms assessments,policy and legislation[J].Toxicon,55(5):1024-1034.
    Lau S,Lane S,2002.Biological and chemical factors influencing shallow lake eutrophication:a long-term study[J].Science of the Total Environment,288(3):167-181.
    Lawson R,Anderson M A,2007.Stratification and mixing in Lake Elsinore,California:An assessment of axial flow pumps for improving water quality in a shallow eutrophic lake[J].Water Research,41(19):4457-4467.
    Lueck R G,Mudge T D,1997.Topographically induced mixing around a shallow seamount[J].Science,276:1831-1833.
    Lung W S,Paerl H W,1988.Modeling blue-green algal blooms in the lower Neuse River[J].Water Research,22(7):895-905.
    Reinart A,Arst H,Erm A,et al,2001.Optical and biological properties of Lakeülemiste,a water reservoir of the city of Tallinn II:Light climate in Lakeülemiste[J].Lakes&Reservoirs:Research&Management,6(1):75-84.
    Ryther J H,Dunstan W M,1971.Nitrogen,phosphorus,and eutrophication in the coastal marine environment[J].Science,171:1008-1013.
    Thomann R V,Mueller J A,1987.Principles of surface water quality modeling and control[M]:Harper&Row,Publishers.
    Wang Y,Shen Z,Niu J,et al,2009.Adsorption of phosphorus on sediments from the Three-Gorges Reservoir(China)and the relation with sediment compositions[J].Journal of Hazardous Materials,162(1):92-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700