不同润湿性土壤对渗流传热影响的LBM模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of the Influence of Different Wetting Soil on the Seepage and Heat Transfer by LBM
  • 作者:张达 ; 李素芬 ; 尚妍 ; 东明
  • 英文作者:ZHANG Da;LI Su-Fen;SHANG Yan;DONG Ming;Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education,Dalian University of Technology;
  • 关键词:非均匀多孔介质 ; 格子Boltzmann模型 ; 润湿性 ; 渗流与传热
  • 英文关键词:nonhomogeneous porous media;;lattice Boltzmann model;;wettability;;seepage and heat transfer
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:海洋能源利用与节能教育部重点实验室大连理工大学;
  • 出版日期:2019-03-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金青年科学基金项目(No.51706034)
  • 语种:中文;
  • 页:GCRB201903026
  • 页数:7
  • CN:03
  • ISSN:11-2091/O4
  • 分类号:173-179
摘要
为探究地热能的利用机制,本文结合电镜扫描实验和随机四参数生成法重构贴合真实土壤的多孔介质结构,进而采用基于自由能理论的格子Boltzmann方法对孔隙尺度下不同滤润湿性非饱和土壤中渗流传热现象进行了模拟,分析了不同润湿性土壤和不同渗流压差对非饱和土壤中渗流传热的影响。结果显示:流体的润湿性减弱时,渗流速度增大,沿渗流方向的对流换热能力增大,沿其方向的有效传热系数随之提高;当渗流压差很小时,渗流无法正常进行,润湿性对渗流传热的影响被大大削弱。
        The mechanism of geothermal energy, the structure of porous media based on SEM and four random parameter generation method fit the real reconstruction of the soil, and then using lattice Boltzmann method based on the theory of free energy on the pore scale does not run with the wet non saturated soil infiltration convection phenomena were simulated and analyzed in different soil wetting and the different flow pressure difference effect on flow and heat transfer in unsaturated soils. The results showed that the wettability decreased fluid, seepage velocity increases along the flow direction, the convection heat transfer capacity increases, the effective heat transfer coefficient along the direction increased; when the seepage pressure is very small, the seepage can not be normal,effects of wettability on the flow and heat transfer was greatly weakened.
引文
[1] WANG H, QI C, DU H, et al. Thermal Performance of Borehole Heat Exchanger under Groundwater Flow:A Case Study From Baoding[J]. Energy and Buildings,2009, 41(12):1368-1373
    [2] Takao Katsura, Katsunori Nagano, Shigeaki Narita, et al.Calculation Algorithm of the Temperatures for Pipe Arrangement of Multiple Ground Heat Exchangers[J]. Applied Thermal Engineering, 2009, 29(5/6):906-919
    [3] Mohamed M, El Kezza O, Abdel-Aal M, et al. Effects of Coolant Flow Rate, Groundwater Table Fluctuations and Infiltration of Rainwater on the Efficiency of Heat Recovery from near Surface Soil Layers[J]. Geothermics, 2015,53:171-182
    [4] Molina-Giraldo N, Bayer P, Blum P. Evaluating the Influence of Thermal Dispersion on Temperature Plumes from Geothermal Systems using Analytical Solutions[J]. International Journal of Thermal Sciences, 2011, 50(7):1223-1231
    [5] Fujii H, Inatomi T, Itoi R, Et Al. Development of Suitability Maps for Ground-Coupled Heat Pump Systems using Groundwater and Heat Transport Models[J]. Geothermics, 2007, 36(5):459-472
    [6] Guerrini I A, Swartzendruber D. Fractal Concepts In Relation to Soil Water Diffusivityl[J]. Soil Science, 1997,162(11):778-784
    [7] Frank X, Funfschilling D, Midoux N, et al. Bubbles in a Viscous Liquid:Lattice boltzmann Simulation and Experimental Validation[J]. Journal of Fluid Mechanics, 2005,546:113-122
    [8] HAO L, CHENG P. Lattice Boltzmann Simulations of Liquid Droplet Dynamic Behavior on a Hydrophobic Surface of a Gas Flow Channel[J]. Journal of Power Sources, 2009,190(2):435-446
    [9] ZHANG J. Lattice Boltzmann Method for Microfluidics:Models and Applications[J]. Microfluidics and Nanoffuidics,2010, 10(1):1-28
    [10] Palmer B J, Rector D R. Lattice-Boltzmann Algorithm For Simulating Thermal Two-Phaseflow[J]. Physical Review E, 2000, 61(5):5295
    [11] HAO L, CHENG P. Lattice Boltzmann Simulations of Water Transport in Gas Diffusion Layer of a Polymer Electrolyte Membrane Fuel Cell[J]. Journal of Power Sources,2010, 195(12):3870-3881
    [12] Swift M R, Orlandini E, Osborn W R, et al. Lattice Boltzmann Simulations of liquid-Gas and Binary Fluid Systems[J]. Physical Review E, 1996, 54(5):5041-5052
    [13] Inamuro T, Ogata T, Tajima, et al. A Lattice Boltzmann Method for Incompressible Two-Phase Flows with Large Density Differences[J]. Journal of Computational Physics,2004, 198:628-644
    [14] Lee T, Lin C L. A Stable Discretization of the Lattice Boltzmann Equation for Simulation of Incompressible Two-Phase Flows at High Density Ratio[J]. Journal of Computational Physics, 2005, 206(1):16-47
    [15] ZHENG H W, SHU C, Chew YT. A Lattice Boltzmann Model for Multiphase Flows with Large Density Ratio[J].Journal of Computational Physics, 2006, 218(1):353-371
    [16] Fakhari A, Rahimian M H. Phase-Field Modeling by the Method of Lattice Boltzmann Equations[J]. Physical Review E, 2010, 81(3):036707
    [17] SHAO J, SHU C, HUANG H, et al. Free-Energy-Based Lattice Boltzmann Model for the Simulation of Multiphase Flows with Density Contrast[J]. Physical Review E, 2014, 89(3):033309
    [18] B Yaron, R Calvet, R Prost. The Soil as a Porous Medium, In:Soil Pollution, Springer[M]. Berlin Heidelberg:Springer, 1996:3-24
    [19] HE Shaoyang, Bereket Tsegai Habte, JIANG Fangming. LBM Prediction of Effective Thermal Conductivity of Lithium-Ion Batterygraphite Anode[J]. International Communications in Heat and Mass Transfer, 2017, 82:1-8
    [20] WANG Moran, PAN Ning, WANG Jinku, et al. Mesoscopic Simulations of Phase Distribution Effects on the Effective Thermal Conductivity of Microgranular Porous Media[J]. Journal of Colloid and Interface Science, 2007,311:562-570
    [21] Young, T. An Essay on the Cohesion of Fluids[J]. Philosophical Transactions-Royal Society Lond, 1805, 95:65-87
    [22] YI Jie, XING Huilin. Pore-Scale Simulation of Effects of Coal Wettability on Bubble-Water Flow in Coal Cleats using Lattice Boltzmann Method[J]. Chemical Engineering Science, 2017, 161:57-66
    [23] A Fakhari, M H Rahimian. Simulation of Falling Droplet by the Lattice Boltzmann Method[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14:3046-3055

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700