声学气体温度计测量不确定度分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of uncertainty in measurement of acoustic gas thermometers
  • 作者:秦海玲 ; 于璠 ; 周刚 ; 李青
  • 英文作者:Qin HaiLing;Yu Fan;Zhou Gang;Li Qing;State Key Laboratory of Technologies in Space Cryogenic Propellants Technical, Institute of Physics and Chemistry,Chinese Academy of Science;University of Chinese Academy of Science;
  • 关键词:声学气体温度计 ; 热力学温度 ; 精密测量 ; 低温 ; 计量学
  • 英文关键词:Acoustic gas thermometer;;Thermodynamic temperature;;Precision measurement;;Low temperature;;Metrology
  • 中文刊名:DWYC
  • 英文刊名:Cryogenics & Superconductivity
  • 机构:中国科学院理化技术研究所航天低温推进剂技术国家重点实验室;中国科学院大学;
  • 出版日期:2019-04-24 10:40
  • 出版单位:低温与超导
  • 年:2019
  • 期:v.47
  • 语种:中文;
  • 页:DWYC201904003
  • 页数:7
  • CN:04
  • ISSN:34-1059/O4
  • 分类号:17-22+70
摘要
声学气体温度计(AGT)是当前测量热力学温度最精确和应用最广泛的计量器具。该方法通过测量声学共鸣腔内的气相声速确定热力学温度,进而得到玻尔兹曼常数,从而实现国际温标开尔文的重新定义。声学气体温度计测量的关键技术包括气体纯度、腔体体积、声波及微波频率的测量。针对当前的研究成果,本文综述了其主要不确定度来源分析,并对未来低温区的精确测量做了展望。
        Acoustic gas thermometer(AGT) is currently the most accurate and wide method in the measurement of k. It can determine k by measuring the speed of gas sound then determine the thermodynamic temperature in the acoustic resonance cavity. The uncertainty in the determination of the thermodynamic temperature by AGT is determined by the following major components: Purity of the test gases which cause uncertain average molar mass, the volume of the cavity resonators of different shape or dimensions and acoustic frequency that fitted for the function of the pressure on the isotherm. This paper reviewed main sources of uncertainty and the prospect of research, the accurate measurement of low temperature area in the future was prospected.
引文
[1] Moldover M R,Mehl J B,Greenspan M.Gas-filled spherical resonators:Theory and experiment[J].Journal of the Acoustical Society of America,1986,79(2):253-272.
    [2] Plumb H,Cataland G.Acoustical thermometer and the national bureau of standards provisional temperature scale 2-20 (1965)[J].Metrologia,1966,2(4):127.
    [3] Grimsrud D T,Jr J H W.Measurements of the velocity of vound in 3He,and 4He,gas at low temperatures with implications for the temperature scale[J].Phys Rev,1967,157(1):181-190.
    [4] Gammon B E.The velocity of sound with derived state properties in helium at -175 to 150 ℃ with pressure to 15 MPa[J].Journal of Chemical Physics,1976,64(6):2556-2568.
    [5] Moldover M R,Trusler J P,Edwards T J,et al.Measurement of the universal gas constant R using a spherical acoustic resonator[J].Physical Review Letters,1988,60(4):249.
    [6] Mehl J B,Moldover M R,Pitre L.Designing quasi-spherical resonators for acoustic thermometry[J].Metrologia,2004,41(4):295.
    [7] Pitre L,Moldover M R.Acoustic thermometry:new results from 273 K to 77 K and progress towards 4 K[J].Metrologia,2006,43(1):142-162.
    [8] Mehl J B.Second-order electromagnetic eigenfrequencies of a triaxial ellipsoid[J].Metrologia,2009,46(5):554.
    [9] Gavioso R M,Madonna Ripa D,Steur P P M,et al.A determination of the molar gas constant R by acoustic thermometry in helium[J].Metrologia,2015,52(5):274-304.
    [10] Mehl J B.Second-order eigenfrequencies of a triaxial ellipsoid II [J].Metrologia,2015,52:227–232.
    [11] Colclough A R,Quinn T J,Chandler T R D.An acoustic redetermination of the gas constant[J].Proceedings of the Royal Society of London,1979,368(1732):125-139.
    [12] Ewing M B,Goodwin A R H,Mcglashan M L,et al.Thermophysical properties of alkanes from speeds of sound determined using a spherical resonator I.Apparatus,acoustic model,and results for dimethylpropane[J].Journal of Chemical Thermodynamics,1987,19(7):721-739.
    [13] Moldover M R,Trusler J P,Edwards T J,et al.Measurement of the universal gas constant R using a spherical acoustic resonator[J].Physical Review Letters,1988,60(4):249.
    [14] Gillis K A,Shinder I I,Moldover M R.Thermoacoustic boundary layers near the liquid-vapor critical point[J].Physical Review E Statistical Nonlinear & Soft Matter Physics,2004,70(2 Pt 1):021201.
    [15] Hurly J J,Mehl J B.4He thermophysical properties:New Ab initio calculations[J].Journal of Research of the National Institute of Standards & Technology,2007,112(2):75.
    [16] Cencek W,Przybytek M,Komasa J,et al.Effects of adiabatic,relativistic,and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium[J].Journal of Chemical Physics,2012,136(22):2629-2648.
    [17] Moldover M R,Gavioso R M,Newell D B.Correlations among acoustic measurements of the Boltzmann constant[J].Metrologia,2015,52(5):376-384.
    [18] Gillis K A,Lin H,Moldover M R.Perturbations from ducts on the modes of acoustic thermometers[J].Journal of Research of the National Institute of Standards & Technology,2009,114(5):263-285.
    [19] Lin H,Feng X J,Gillis K A,et al.Improved determination of the Boltzmann constant using a single,fixed-length cylindrical cavity[J].Metrologia,2013,50(5):417-432.
    [20] Aldrich L T,Nier A O.The occurrence of 3He,in natural sources of helium[J].Phys Rev,1948,74(11):1590-1594.
    [21] Pitre L,Risegari L,Sparasci F,et al.Determination of the Boltzmann constant k from the speed of sound in helium gas at the triple point of water[J].Metrologia,2015,52(5):S263-S273.
    [22] Pitre L,Guianvarc H C,Sparasci F,et al.An improved acoustic method for the determination of the Boltzmann constant at LNE-INM/CNAM[J].Comptes Rendus Physique,2009,10(9):835-848.
    [23] Moldover M R.Optimizing acoustic measurements of the Boltzmann constant [J].Comptes Rendus Physique,2009,10(9):815-827.
    [24] Pitre L,Guianvarc H C,Sparasci F,et al.Progress towards an acoustic/microwave determination of the boltzmann constant at LNE-INM/CNAM[J].International Journal of Thermophysics,2008,29(5):1730-1739.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700