空气域与流体域耦合作用下双层电池包散热特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Heat dissipation characteristics of double-layer battery pack under coupling of air and fluid domains
  • 作者:赵磊 ; 朱茂桃 ; 徐晓明 ; 胡东海 ; 李仁政
  • 英文作者:ZHAO Lei;ZHU Maotao;XU Xiaoming;HU Donghai;LI Renzheng;School of Automotive and Traffic Engineering,Jiangsu University;
  • 关键词:双层电池包 ; 空气域 ; 流体域 ; 数值分析 ; 散热特性
  • 英文关键词:double-layer battery pack;;air domain;;fluid domain;;numerical analysis;;heat dissipation characteristics
  • 中文刊名:BJHK
  • 英文刊名:Journal of Beijing University of Aeronautics and Astronautics
  • 机构:江苏大学汽车与交通工程学院;
  • 出版日期:2018-08-08 09:14
  • 出版单位:北京航空航天大学学报
  • 年:2019
  • 期:v.45;No.311
  • 基金:国家自然科学基金(51505196,51705208);; 江苏省研究生科研与实践创新计划(SJCX17_0583);; 清华大学汽车安全与节能国家重点实验室开放基金(KF1819)~~
  • 语种:中文;
  • 页:BJHK201901023
  • 页数:12
  • CN:01
  • ISSN:11-2625/V
  • 分类号:203-214
摘要
多层垒叠电池包内空气域的存在使各层模组热流场耦合在一起,从而影响电池模组的散热性能。以方形双层电池包为研究对象,建立考虑电池模组与空气对流换热的液冷热模型。该模型中电池发热功率基于试验测定结果,前处理软件采用ANSA确保仿真精度,后处理软件采用CFX,对在不同放电倍率、冷却液进液方向和进液流量下双层电池结构中空气域对液冷热管理系统热行为的影响进行了研究,并与不考虑空气域同工况仿真结果对比。结果表明:空气域的存在不会对液冷双层电池包上下层模组温度分布产生影响;但可以降低上下层模组间的温差,其中上下层模组最高温升的差值最大可降低49. 1%,改善了整包电池温度的一致性。
        The existence of the air domain in the multi-layer stacked battery pack makes the heat flow field of each layer module coupled together,thus affecting the heat dissipation performance of the battery module. A liquid-cooled heat transfer model for a square double-layer battery pack is established with considering the convection heat transfer between the battery module and the air. The thermal power of the battery in this model is based on the experimental results. ANSA is used as the pre-processing software to ensure the simulation accuracy,and CFX is used as the post-processing software. The effect of air domain in double-layer battery structure on the thermal behavior of liquid-cooled thermal management system is studied under different discharge rates,cooling fluid inlet directions and liquid flow rates. It is compared with the simulation result without the consideration of air domain under the same working condition. The comparison results show that the presence of the air domain does not affect the temperature distribution of upper and lower module of the liquid-cooled double-layer battery pack,but reduces the temperature difference of the upper and lower modules,and the difference of the maximum temperature rise in the upper and lower modules can be reduced by 49. 1%to a largest extent,which improves the temperature consistency of the whole battery pack.
引文
[1]NAKAYAMA M,FUKUDA K,ARAKI T,et al.Thermal behavior of nickel metal hydride battery during rapid charge and discharge cycles[J].Electrical Engineering in Japan,2006,157(4):30-39.
    [2]陈燕虹,吴伟静,刘宏伟,等.纯电动汽车电池箱的热特性[J].吉林大学学报,2014,44(4):925-932.CHEN Y H,WU W J,LIU H W,et al.The thermal characteristics of a pure electric vehicle battery box[J].Journal of Jilin University,2014,44(4):925-932(in Chinese).
    [3]姬芬竹,刘丽君,杨世春,等.电动汽车动力电池生热模型和散热特性[J].北京航空航天大学学报,2014,40(1):18-24.JI F Z,LIU L J,YANG S C,et al.Heat generation model and heat dissipation characteristics of electric vehicle battery[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(1):18-24(in Chinese).
    [4]PESARAN A A.Battery thermal models for hybrid vehicle simulations[J].Journal of Power Sources,2002,110(2):377-382.
    [5]LI X S,HE F,MA L.Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation[J].Journal of Power Sources,2013,238(238):395-402.
    [6]SAW L H,YE Y H,TAY A A O,et al.Computational fluid dynamic and thermal analysis of lithium-ion battery pack with air cooling[J].Applied Energy,2016,177:783-792.
    [7]WANG T,TSENG K J,ZHAO J Y.Development of efficient aircooling strategies for lithium-ion battery module based on empirical heat source model[J].Applied Thermal Engineering,2015,90:521-529.
    [8]PENDERGAST D R,DEMAURO E P,FLETCHER M,et al.Arechargeable lithium-ion battery module for underwater use[J].Journal of Power Sources,2011,196(2):793-800.
    [9]YANG X H,TAN S C,LIU J.Thermal management of Li-ion battery with liquid metal[J].Energy Conversion and Management,2016,117:577-585.
    [10]RAO Z H,HUO Y T,LIU X J,et al.Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam[J].Journal of the Energy Institute,2015,88(3):241-246.
    [11]施尚,余建祖,谢永奇,等.锂电池相变材料/风冷综合热管理系统温升特性[J].北京航空航天大学学报,2017,43(6):1278-1286.SHI S,YU J Z,XIE Y Q,et al.Temperature rise characteristics of lithium battery phase change material/air-cooled integrated thermal management system[J].Journal of Beijing University of Aeronautics and Astronautics,2017,43(6):1278-1286(in Chinese).
    [12]赵春荣,曹文炅,董缇,等.圆柱形锂离子电池模组微通道液冷热模型[J].化工学报,2017,68(8):3232-3241.ZHAO C R,CAO W J,DONG T,et al.Liquid cooling and heating model for cylindrical lithium ion battery module[J].Journal of Chemical Industry,2017,68(8):3232-3241(in Chinese).
    [13]徐晓明,赵又群.不同工况下电动汽车冷板液冷系统散热性能试验研究[J].汽车工程,2014,36(9):1057-1062.XU X M,ZHAO Y Q.Experimental study on heat dissipation performance of cold plate liquid cooling system of electric vehicle under different working conditions[J].Automobile Engineering 2014,36(9):1057-1062(in Chinese).
    [14]ZHAO J T,RAO Z H,LI Y M.Thermal performance of minichannel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery[J].Energy Conversion and Management,2015,103:157-165.
    [15]SRINIVASAN V,WANG C Y.Analysis of electrochemical and thermal behavior of Li-ion cells[J].Journal of the Electrochemical Society,2003,150(1):A98.
    [16]FAN L W,KHODADADI J M,PESARAN A A.A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles[J].Journal of Power Sources,2013,238:301-312.
    [17]BERNARDI D.A general energy balance for battery systems[J].Journal of the Electrochemical Society,1985,132(1):5-15.
    [18]FANG W F,KWON O J,WANG C Y.Electrochemical-thermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell[J].International Journal of Energy Research,2010,34(2):107-115.
    [19]REYNIER Y F,YAZAMI R,FULTZ B.Thermodynamics of lithium intercalation into graphites and disordered carbons[J].Journal of the Electrochemical Society,2004,151(3):A422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700