湖泊水动力对水生植物分布的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A review of the studies on the response of aquatic vegetation to hydrodynamic stress in lakes
  • 作者:朱金格 ; 胡维平 ; 刘鑫 ; 邓建才
  • 英文作者:ZHU Jinge;HU Weiping;LIU Xin;DENG Jiancai;State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:水生植物 ; 物理抗性 ; 生物力学 ; 水动力胁迫 ; 浅水湖泊 ; 生态恢复
  • 英文关键词:aquatic vegetation;;mechanical resistance;;biomechanics;;hydrodynamic stress;;shallow lakes;;ecological restoration
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室;中国科学院大学;
  • 出版日期:2018-10-18 14:57
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金资助项目(51609235);; 江苏省自然科学基金资助项目(BK20151063);; 国家水体污染治理重大专项(2017ZX07205002)
  • 语种:中文;
  • 页:STXB201902006
  • 页数:6
  • CN:02
  • ISSN:11-2031/Q
  • 分类号:59-64
摘要
水动力作为湖泊水生植物恢复的关键限制性因子,其对水生植物的影响机制是当前迫切需要关注的科学问题。从水动力作用下水生植物的分布、水生植物受力以及水生植物自身机械抗性3个方面系统梳理了当前的研究方法与结论。结果表明,水生植物在河流湖泊中的丰度、空间分布与水动力密切相关,各物种对水流胁迫表现出不同的响应;植物在水动力作用下的受力观测和研究主要依赖模拟试验,通过计算定量表征不同物理外型物种在水动力作用下的受力,明确了生物量和植物系数等影响受力的关键参数,为不同塑形物种受力的对比分析提供了研究方法;植物机械抗性主要基于测力装置观测,通过断裂应力、弯曲力等生物力学参数表征。在当前研究背景下,水生植物尤其是沉水植物在湖泊中的实际受力情况依然是研究难点,需要借助新的观测手段和研究方法来阐明植物在复杂的湖泊水动力环境下的实际受力特征。此外,还需要进一步开展水生植物在湖泊中的实际受力与植物自身机械抗性的耦合研究,这是开展水生植物响应湖泊水动力机理研究的关键。
        Hydrodynamics is considered to play a crucial role in the propagation of aquatic plants; however,the mechanism underlying hydrodynamic effects on aquatic plants is poorly understood. This article reviews the current research methods and conclusions from the following three perspectives: 1) distribution of aquatic plants under the influence of hydrodynamic forces; 2) hydraulic forces; and 3) biomechanical properties of aquatic plants. The results showed that the abundance and spatial distribution of aquatic plants in rivers and lakes are closely related to hydrodynamics. Furthermore,different species of plants respond to water flow stress differently. The findings on the hydraulic force of aquatic plants mainly relied on laboratory tests,and related physical parameters could be calculated quantitatively. Biomass and plant coefficients were demonstrated to be the critical parameters affected by hydraulic forces. These provide research approaches for comparative analyses of hydraulic forces on different plant species. Biomechanical properties of aquatic plants were characterized using break and bending forces measured by force-measuring devices. It is possible that the determined hydraulic forces of aquatic plants based on laboratory tests are different from the actual values,especially for submerged macrophytes. Therefore,moreaccurate investigation methods and statistical analyses are needed to quantify the actual plant hydraulic stress in complex hydrodynamic conditions in lakes. In addition,further studies could also focus on the threshold value of hydraulic and biomechanical forces,which is key to studying the mechanism of the response of aquatic plants to hydrodynamic stress.
引文
[1] Wang C,Zhu P,Wang P F,Zhang W M. Effects of aquatic vegetation on flow in the Nansi Lake and its flow velocity modeling. Journal of Hydrodynamics,Ser. B,2006,18(6):640-648.
    [2] Weisner S E B,Strand J A. Ecology and management of plants in aquatic systems//Perrow M R,Davy A J,eds. Handbook of Ecological Restoration. Volume 1. Principles of Restoration. Cambridge:Cambridge University Press,2002:242-256.
    [3] Gulati R D,Pires L M D,van Donk E. Lake restoration studies:failures,bottlenecks and prospects of new ecotechnological measures. LimnologicaEcology and Management of Inland Waters,2008,38(3/4):233-247.
    [4] Scheffer M,Hosper S H,Meijer M L,Moss B,Jeppesen E. Alternative equilibria in shallow lakes. Trends in Ecology&Evolution,1993,8(8):275-279.
    [5] Bachmann R W,Hoyer M V,Canfield D E Jr. Internal heterotrophy following the switch from macrophytes to algae in Lake Apopka,Florida.Hydrobiologia,2000,418(1):217-227.
    [6] Havens K E,Jin K R,Rodusky A J,Sharfstein B,Brady M A,East T L,Iricanin N,James R T,Harwell M C,Steinman A D. Hurricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level. The Scientific World,2001,1:44-70.
    [7] Wilson J R U,Ajuonu O,Center T D,Hill M P,Julien M H,Katagira F F,Neuenschwander P,Njoka S W,Ogwang J,Reeder R H,Van T.The decline of water hyacinth on Lake Victoria was due to biological control by Neochetina spp. Aquatic Botany,2007,87(1):90-93.
    [8]刘伟龙,胡维平,谷孝鸿.太湖马来眼子菜(Potamogeton malaianus)生物量变化及影响因素.生态学报,2007,27(8):3324-3333.
    [9] Denny M,Gaylord B. The mechanics of wave-swept algae. The Journal of Experimental Biology,2002,205(Pt 10):1355-1362.
    [10] Schutten J,Dainty J,Davy A J. Root anchorage and its significance for submerged plants in shallow lakes. Journal of Ecology,2005,93(3):556-571.
    [11] Butcher R W. Studies on the ecology of rivers:I. On the distribution of macrophytic vegetation in the rivers of Britain. Journal of Ecology,1993,21(1):58-91.
    [12] Biggs B J F. Hydraulic habitat of plants in streams. River Research and Applications,1996,12(2/3):131-144.
    [13] Riis T,Biggs B J F. Hydrologic and hydraulic control of macrophyte establishment and performance in streams. Limnology and Oceanography,2003,48(4):1488-1497.
    [14] O'Hare M T,Baattrup-Pedersen A,Nijboer R,Szoszkiewicz K,Ferreira T. Macrophyte communities of European streams with altered physical habitat. Hydrobiologia,2006,566(1):197-210.
    [15] O'Hare M T,Hutchinson K A,Clarke R T. The drag and reconfiguration experienced by five macrophytes from a lowland river. Aquatic Botany,2007,86(3):253-259.
    [16] Breugnot E,Dutartre A,Laplace-Treyture C,Haury J. Local distribution of macrophytes and consequences for sampling methods in large rivers.Hydrobiologia,2008,610(1):13-23.
    [17] Steffen K,Leuschner C,Müller U,Wiegleb G,Becker T. Relationships between macrophyte vegetation and physical and chemical conditions in northwest German running waters. Aquatic Botany,2014,113:46-55.
    [18] KeruzoréA A,Willby N J. Avoidance of hydrological disturbance by aquatic vegetation in the floodplain of a large upland river. Aquatic Botany,2014,116:19-26.
    [19] French T,Chambers P. Habitat partitioning in riverine macrophyte communities. Freshwater Biology,1996,36(3):509-520.
    [20] Chambers P A,Prepas E E,Hamilton H R,Bothwell M L. Current velocity and its effect on aquatic macrophytes in flowing waters. Ecological Applications,1991,1(3):249-257.
    [21] Sand-Jensen K. Drag forces on common plant species in temperate streams:consequences of morphology,velocity and biomass. Hydrobiologia,2008,610(1):307-319.
    [22] Schutten J,Dainty J,Davy A J. Wave-induced hydraulic forces on submerged aquatic plants in Shallow Lakes. Annals of Botany,2004,93(3):333-341.
    [23] Istvánovics V,Honti M,Kovács,Osztoics A. Distribution of submerged macrophytes along environmental gradients in large,shallow Lake Balaton(Hungary). Aquatic Botany,2008,88(4):317-330.
    [24] Angradi T R,Pearson M S,Bolgrien D W,Bellinger B J,Starry M A,Reschke C. Predicting submerged aquatic vegetation cover and occurrence in a Lake Superior estuary. Journal of Great Lakes Research,2013,39(4):536-546.
    [25] Zhu G R,Zhang M,Cao T,Ni L Y. Associations between the morphology and biomechanical properties of submerged macrophytes:implications for its survival and distribution in Lake Erhai. Environmental Earth Sciences,2015,74(5):3907-3916.
    [26] James W J,Barko J W,Butler M G. Shear stress and sediment resuspension in relation to submersed macrophyte biomass. Hydrobiologia,2004,515(1/3):181-191.
    [27] Mendez F J,Losada I J. An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coastal Engineering,2004,51(2):103-118.
    [28] Green J C. Effect of macrophyte spatial variability on channel resistance. Advances in Water Resources,2006,29(3):426-438.
    [29] Li Y P,Du W,Yu Z B,Tang C Y,Wang Y,Anim D O,Ni L X,Lau J,Chew S A,Acharya K. Impact of flexible emergent vegetation on the flow turbulence and kinetic energy characteristics in a flume experiment. Journal of Hydro-environment Research,2015,9(3):354-367.
    [30] Dawson F H,Robinson W N. Submerged macrophytes and the hydraulic roughness of a lowland chalkstream. Verhandlungen des Internationalen Verein Limnologie,1984,22(3):1944-1948.
    [31] Madsen J D,Chambers P A,James W F,Koch E W,Westlake D F. The interaction between water movement,sediment dynamics and submersed macrophytes. Hydrobiologia,2001,444(1/3):71-84.
    [32] Schutten J,Davy A J. Predicting the hydraulic forces on submerged macrophytes from current velocity,biomass and morphology. Oecologia,2000,123(4):445-452.
    [33] Sand-Jensen K. Drag and reconfiguration of freshwater macrophytes. Freshwater Biology,2003,48(2):271-283.
    [34] Puijalon S,Léna J P,Rivière N,Champagne J Y,Rostan J C,Bornette G. Phenotypic plasticity in response to mechanical stress:hydrodynamic performance and fitness of four aquatic plant species. New Phytologist,2008,177(4):907-917.
    [35] Puijalon S,Bornette G. Phenotypic plasticity and mechanical stress:biomass partitioning and clonal growth of an aquatic plant species. American Journal of Botany,2006,93(8):1090-1099.
    [36] Puijalon S,Bouma T J,Douady C J,van Groenendael J,Anten N P R,Martel E,Bornette G. Plant resistance to mechanical stress:evidence of an avoidance-tolerance trade-off. New Phytologist,2011,191(4):1141-1149.
    [37] Downing-Kunz M,Stacey M. Flow-induced forces on free-floating macrophytes. Hydrobiologia,2011,671(1):121-135.
    [38] Schoelynck J,Meire D,Bal K,Buis K,Troch P,Bouma T,Meire P,Temmerman S. Submerged macrophytes avoiding a negative feedback in reaction to hydrodynamic stress. Limnologica-Ecology and Management of Inland Waters,2013,43(5):371-380.
    [39] Bocig K,Galka A,azarkiewicz T,Szmeja J. Mechanical strength of stems in aquatic macrophytes. Acta Societatis Botanicorum Poloniae,2009,78(3):181-187.
    [40] Miler O,Albayrak I,Nikora V,O'Hare M. Biomechanical properties and morphological characteristics of lake and river plants:implications for adaptations to flow conditions. Aquatic Sciences,2014,76(4):465-481.
    [41] Miler O,Albayrak I,Nikora V,O'Hare M. Biomechanical properties of aquatic plants and their effects on plant-flow interactions in streams and rivers. Aquatic Sciences,2012,74(1):31-44.
    [42] Zhu G R,Cao T,Zhang M,Ni L Y,Zhang X L. Fertile sediment and ammonium enrichment decrease the growth and biomechanical strength of submersed macrophyte Myriophyllum spicatum in an experiment. Hydrobiologia,2014,727(1):109-120.
    [43] Zhu G R,Li W,Zhang M,Ni L Y,Wang S R. Adaptation of submerged macrophytes to both water depth and flood intensity as revealed by their mechanical resistance. Hydrobiologia,2012,696(1):77-93.
    [44] Ennos A R. The scaling of root anchorage. Journal of Theoretical Biology,1993,161(1):61-75.
    [45]祝国荣,张萌,王芳侠,高阳,曹特,倪乐意.从生物力学角度诠释富营养化引发的水生植物衰退机理.湖泊科学,2017,29(5):1029-1042.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700