焊接金属波纹管机械密封端面径向振动特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Radial Vibration Characteristics of Mechanical Seals of Welded Metal Bellows
  • 作者:马咏梅 ; 马传鑫 ; 张弦 ; 项章特 ; 张清波 ; 蔡勇 ; 王庆 ; 吴琼
  • 英文作者:MA Yongmei;MA Chuanxin;ZHANG Xian;XIANG Zhangte;ZHANG Qingbo;CAI Yong;WANG Qing;WU Qiong;School of Manufacturing Sci.and Eng.,Sichuan Univ.;Sichuan Sunny Seal Co.,Ltd.;Fushun Petrochemical Co.;
  • 关键词:机械密封 ; 圆环理论 ; 端面振动 ; 径向振动位移
  • 英文关键词:mechanical seal;;ring theory;;face vibration;;radial vibration displacement
  • 中文刊名:SCLH
  • 英文刊名:Advanced Engineering Sciences
  • 机构:四川大学制造科学与工程学院;四川日机密封件股份有限公司;抚顺石化公司;
  • 出版日期:2019-02-20 15:10
  • 出版单位:工程科学与技术
  • 年:2019
  • 期:v.51
  • 基金:四川省科技支撑计划项目资助(2014GZ0128)
  • 语种:中文;
  • 页:SCLH201902021
  • 页数:8
  • CN:02
  • ISSN:51-1773/TB
  • 分类号:164-171
摘要
焊接金属波纹管机械密封是轴类密封的重要类型之一,而密封端面振动特性是泄漏量和端面磨损的关键影响因素。由于目前针对焊接金属波纹管机械密封端面振动位移相关理论研究较少且没有具体分析各工作参数对端面振动的影响。首先,作者建立了端面密封环的几何模型和极坐标下端面所受表面压力以及分布力矩的数学模型;采用圆环理论和数值分析方法,推导出受谐波形式载荷条件下端面振动位移的求解公式。然后,利用MATLAB求解出密封端面在不同工况条件下轴向振动和径向振动位移特解。发现在相同的工况条件下径向振动位移均大于轴向振动位移。最后,设计了径向振动试验,利用电涡流传感器测量密封端面径向振动位移,分别探究了介质压力、工作转速、载荷系数和压缩量对径向振动位移的影响。结果表明:工作转速和压缩量对径向振动位移影响较大,介质压力和载荷系数对径向振动位移影响趋势相同。径向振动位移随着转速的增大而急剧增大;随着压缩量的增加先缓慢增大后迅速增大;随着介质压力的升高、载荷系数的增大,径向振动位移先减小后增大。对比理论计算和试验结果,验证了密封端面振动位移数学模型的正确性。优选出合理的工作参数范围为:介质压力为0.4~1.4 MPa,工作转速为1 500~2 500 r/min,载荷系数K为0.60~0.75,压缩量为4~6 mm。
        The mechanical seal of welded metal bellows is one of the important sealing methods in shaft seal, and the vibration characteristics of seal end face are a key factor in the amount of leakage and end face wear. Due to the lack of the theoretical research on the vibration displacement of the mechanical seal face of welded metal bellows, the influence of each working parameter on the end face vibration has not been analyzed.The geometric model of the face seal ring and the mathematical model of surface pressure and distribution moment under the polar coordinate were established. Based on the ring theory and numerical analysis method, the solution formula of the end face vibration displacement was deduced. Then, the special solution of the axial vibration and radial vibration displacement under different working conditions of the sealing face was solved by using MATLAB. The comparison of the results of special solutions of displacemen showed that the radial vibration displacement is larger than the axial direction under the same working conditions. A vibration test was designed for the radial direction. The displacement of the seal face was measured by using eddy current sensor, and the effects of medium pressure, working speed, load coefficient and compression amount on radial vibration displacement were studied. Experimental results showed that the working speed and compression have a serious impact on the radial vibration displacement, and the medium pressure and load coefficient have the same influence trends on the radial vibration displacement. With the increase of the working speed, the radial vibration displacement drastically increases. As the amount of compression increases, it increases slowly and then increases rapidly. With the increase of the medium pressure or the increase of the load factor, the radial vibration displacement decreases first and then increases. By comparing theoretical calculations with experimental results, the correctness of the mathematical model of the vibration displacement of the seal face was verified. The reasonable working parameters are listed as follow: The medium pressure is 0.4~1.4 MPa, the working speed is 1 500~2 500 r/min, the load factor K is 0.60~0.75, and the compression is 4~6 mm.
引文
[1]Chen Zhi,Gao Yu,Dong Rong,et al.Finite element analysis of sealing characteristics of the rubber O-ring for a mechanical seal[J].Journal of Sichuan University(Engineering Science Edition),2011,43(5):234-239.[陈志,高钰,董蓉,等.机械密封橡胶O形圈密封性能的有限元分析[J].四川大学学报(工程科学版),2011,43(5):234-239.]
    [2]Wu Weijie.Finite element analysis and experimental verification of metal bellows mechanical seal[D].Beijing:Beijing Institute of Petrochemical Technology,2015.[吴卫杰.金属波纹管机械密封的有限元分析及实验验证[D].北京:北京石油化工学院,2015.]
    [3]Zhou Min,Sun Jianjun,Ma Chenbo,et al.Performance analysis of self-pumping fluid dynamic pressure mechanical seal[J].Journal of Chemical Industry and Engineering(China),2015,66(2):687-694.[周敏,孙见君,马晨波,等.自泵送流体动压型机械密封性能分析[J].化工学报,2015,66(2):687-694.]
    [4]Chen Yuan,Jiang Jinbo,Peng Xudong.Dynamic characteristics and transient sealing performance analysis of hyperelliptic curve groove dry gas seals[J].Tribology International,2017,116(11):217-228.
    [5]Young L A,Key B,Philipps R,et al.Mechanical seals with laser machined wavy SiC faces for high duty boiler circulation and feedwater applications[J].Lubrication Engineering,200359(4):30-39.
    [6]Bass R L,Holster J L.Bellows vibration with internal cryogenic fluid flows[J].Journal of Engineering for Industry1972,94(1):70-74.
    [7]Zhang Shuqiang,Wang Liang,Chen Jie,et al.Study on the influence of spring and seal ring stiffness and damping on gas face seal follow-up[J].Journal of Vibration and Shock2018,37(3):54-60.[张树强,王良,陈杰,等.弹簧和密封圈刚度和阻尼对气体端面密封追随性的影响研究[J].振动与冲击,2018,37(3):54-60.]
    [8]Ban Yaotao,Liang Boran,Gu Yongquan.Dynamic oil film pressure between seal surfaces when torsional vibration exists in metal bellows seals[J].Fluid Machinery,1990(3):1-5[班耀涛,梁伯然,顾永泉.波纹管机械密封扭转振动的动态膜压[J].流体机械,1990(3):1-5.]
    [9]He Lifeng,Zhu Hanhua,Fan Shidong,et al.Effect of spring stiffness on vibration performance of contact type mechanical seal[J].Lubrication Engineering,2010,35(6):64-68.[贺立峰,朱汉华,范世东,等.弹簧刚度对端面接触式机械密封振动的影响[J].润滑与密封,2010,35(6):64-68.]
    [10]Liu Jingxi,Ye Wenbing,Li Tianyun,et al.Analysis of membrane pressure distribution of mechanical seal endface[J].Petro-chemical Equipment,2007,36(5):43-45.[刘敬喜,叶文兵,李天匀,等.机械密封端面的膜压分布分析[J].石油化工设备,2007,36(5):43-45.]
    [11]Lebeck A O.Principles and design of mechanical face seals[M].New Yorks:John Wiley&Sons,Inc.,1991.
    [12]Chan H C,Mcminn S J.The stability of a uniformly compressed ring surrounded by a rigid circular surface[J].International Journal of Mechanical Sciences,1966,8(6):433-442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700