低展弦比CAES向心涡轮叶顶型线的正交设计优化(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tip Profile Optimization in a Low Aspect Ratio CAES Radial Expander Based on Orthogonal Design
  • 作者:王星 ; 李文 ; 张雪辉 ; 朱阳历 ; 左志涛 ; 陈海生
  • 英文作者:Xing Wang;Wen Li;Xue-hui Zhang;Yang-li Zhu;Zhi-tao Zuo;Hai-sheng Chen;Institute of Engineering Thermophysics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 英文关键词:Radial Expander;;Optimization;;Blade Tip Profile;;CAES;;Orthogonal Experiment Design
  • 中文刊名:FENG
  • 英文刊名:Chinese Journal of Turbomachinery
  • 机构:Institute of Engineering Thermophysics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 出版日期:2019-02-26
  • 出版单位:风机技术
  • 年:2019
  • 期:v.61;No.271
  • 基金:National Key R&D Plan(2017YFB0903602);; The frontier science research project of CAS(QYZDB-SSW-JSC023);; Transformational Technologies for Clean Energy and Demonstration,Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21070200)
  • 语种:英文;
  • 页:FENG201901002
  • 页数:12
  • CN:01
  • ISSN:21-1167/TH
  • 分类号:4+16-26
摘要
为降低叶顶泄漏损失,本文首次将NACA翼型引入向心涡轮,并采用正交试验设计和计算流体动力学(CFD)方法获得了具有最优NACA叶顶型线的向心涡轮叶片,并揭示了该叶片对叶顶泄漏损失的控制机理。结果表明,最优NACA叶顶型线具有较大的前缘内接圆半径、较小的尾缘厚度,以及更靠近前缘的最大厚度位置。其内接圆半径和最大厚度位置对向心涡轮等熵效率的影响度也随叶顶间隙增加而增大。当叶顶间隙为8%出口叶高时,最优NACA叶顶型线可使向心涡轮等熵效率提高1.47%,并使向心涡轮能够在非设计工况下具有较高效率。该型线能够降低尾缘附近的叶顶泄漏速度,减弱泄漏流与主流掺混强度,使流动损失降低。
        Blade tip profile based on NACA airfoil is firstly introduced into the radial expander to suppress the tip leakage loss. A blade with optimal NACA tip profile is obtained by coupling orthogonal experiment design and Computational Fluid Dynamic(CFD) model. The tip loss reduction mechanism leakage flow is also revealed. The results illustrate that the optimal NACA tip profile presents smaller leading edge inscribed circle radius, thinner trailing edge.The location maximum thickness is close to the front edge. The influence of leading edge inscribed circle radius and maximum thickness location on radial expander's efficiency is increased with the increase of tip clearance. The blade with optimal NACA tip profile even increases the radial expander's efficiency by 1.47% when tip clearance is 8%,and it also presents higher efficiency at off-design condition. The blade with optimal NACA tip profile reduces tip leakage flow velocity near the trialing edge region, weakens the mixing strength between leakage flow and mainstream,and therefore decreases flow loss.
引文
[1]Ma C,Yuan X.(2012).Investigation of unsteady flow in a singl stage high load radial expander by 3D RANS simulation.J.Eng[J]Thermophys,33:757-760.
    [2]Fu L,Feng Z,Li G.(2017).Experimental investigation on overall per formance of a millimeter-scale radial expander for micro gas turbin[J].Energy.,134:1-9.
    [3]Letoa A,Aldo Bonfigliolib A.(2017).Preliminary design of a radia expander for methane expander rocket-engine[J].Energ.Procedia126:738-745.
    [4]Kim D,Kim Y.(2017).Preliminary design and performance analysi of a radial expander for ocean thermal energy conversion[J].Renew Energ.,106:255-263.
    [5]Rahbar K,Mahmoud S,Al-Dadah RK.(2017).Development and ex perimental study of a small-scale compressed air radial expander fo distributed power generation.Appl[J].Therm.Eng,116:549-583.
    [6]Kang SH.(2016).Design and preliminary tests of ORC(organic Ran kine cycle)with two-stage radial expander[J].Energy,96:142-154.
    [7]Futral SM,Holeski DE.(1970).Experimental results of varying th blade-shroud clearance in a 6.02-inch radial expander.NASA Techni cal Note D-5513.Washington,D C.
    [8]Ishino M,Otuka M,Uchida H,et al.(1991).The effects of tip clear ance on small radial expander performance[C].Proceedings of 1991Yokohama International Gas Turbine Congress,Vol.I:165-169,Japan.
    [9]Jones AC.(1996).Design and test of a small,high presure ratio radia expander[J].ASME J.Turbomach.,118:362-370.
    [10]Pereiras B,Castro F,El Marjani A.(2011).Tip clearance effect on the flow pattern of a radial impulse turbine for wave energy conver sion.ASME J.Turbomach.,133:041019-1~041019-10.
    [11]El-Ghandour M,Mori K,NAKANURA Y.(2010).Desensitization o tip clearance effects in axial flow turbines[J].J.Fluid Sci.&Tech.5:317-330.
    [12]Zhou C,Hodson H,Tibbott I,et al.(2013).Effects of winglet geome try on the aerodynamic performance of tip leakage flow in a turbin cascade[J].ASME J.Turbomach.,135:051009-1~051009-10.
    [13]Ralph J.Volino.(2017),Control of tip leakage in a high-pressure tur bine cascade using tip blowing[J].ASME J.Turbomach.,139061008-1~061008-12.
    [14]De Maesschalck C,Lavagnoli S,Paniagua G.(2014).Blade tip shape optimization for enhanced turbine aerothermal performanc[J].ASME J.Turbomach.,136:041016-1~041016-11.
    [15]Lavagnoli S,De Maesschalck C,Andreoli V.(2017).Design consid erations for tip clearance control and measurement on a turbine rain bow rotor with multiple blade tip geometries[J].ASME J.Eng.Ga Turb.Power,139:042603-1~042603-10.
    [16]Fu Y,Chen F,Liu H et al.(2017).Experimental and numerical study of honeycomb tip on suppressing tip leakage flow in turbine cascad[C].ASME paper GT2017-64942.
    [17]Futral SM,Holeski DE.(1970).Experimental results of varying th blade-shroud clearance in a 6.02-inch radial expander.NASA Tech nical Note D-5513.Washington,DC:NASA.
    [18]Deng QH,Niu JF,Feng ZP.(2008).Study on tip leakage flow char acteristics of a radial expander rotor[J].Scientia Sinica(Technologi ca),51:1125-1136.
    [19]Deng QH,Niu JF,Feng ZP.(2006).Effects of rotor blade tip clear ance on total aero-dynamic performance in a radial expander[J].JEng.Thermophys,27:408-410.
    [20]Yoon S.(2013).The effect of the degree of reaction on the leakag loss in steam turbines[J].J.Eng.Gas Turb.Power,135:022602-1~022602-9.
    [21]Fu L,Feng Z,Li G,et al.(2015).Experimental validation of an inte grated optimization design of a radial expander for micro gas tur bines[J].Journal of Zhejiang University-SCIENCE A(Applied Phys ics&Engineering),16:241-249.
    [22]Cao T,Xu L,Yang M,et al.(2014).Radial expander rotor respons to pulsating inlet flows[J].ASME J.Turbomach.,136:071003-1~071003-10.
    [23]Rahbar K,Mahmoud S,Al-Dadah RK,et al.(2017).Development and experimental study of a small-scale compressed air radial expande for distributed power generation[J].Appl.Therm.Eng.,116:549-583.
    [24]Seok Hun Kang.(2012).Design and experimental study of ORC(or ganic Rankine cycle)and radial expander using R245fa working flu id[J].Energy,41:514-524.
    [25]Simonyi PS,Roelke RJ,Stabe RG,et al.(1995).Aerodynamic evalu ation of two compact radial expander rotors.NASA TP-3514.
    [26]Zhu J,Chen W.(2014).Energy and exergy performance analysis of marine rotary desiccant air-conditioning system based on orthogona experiment[J].Energy,77:953-962.
    [27]Feng ZK,Niu WJ,Cheng CT.(2017).Hydropower system operation optimization by discrete differential dynamic programming based on orthogonal experiment design[J].Energy,126:720-732.
    [28]Liu YW,Wu RJ,Yang P.(2016).Parameter study of the injection configuration in a zero boil-off hydrogen storage tank using orthogo nal test design.Appl[J].Therm.Eng.,109:283-294.
    [29]Qu Y,Chen SY.(2017).Orthogonal experimental research on th structural parameters of a self-excited pulsed cavitation nozzle[J]Eur.J.Mech B-Fluid,65:179-183.
    [30]Zhang DK,Chen K,Wu L,et al.(2012).Synthesis and characteriza tion of PVA-HA-Silk composite hydrogel by orthogonal experiment J[J].Bionic Eng.,9:234-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700