双质量硅微机械陀螺仪带宽拓展系统设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bandwidth expanding system design of dual-mass silicon MEMS gyroscope
  • 作者:曹慧亮 ; 李宏生 ; 申冲 ; 石云波 ; 刘俊 ; 王华
  • 英文作者:CAO Hui-liang;LI Hong-sheng;SHEN Chong;SHI Yun-bo;LIU Jun;WANG Hua;Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China;Key Laboratory of Science and Technology on Electronic Test & Measurement,North University of China;School of Instrument Science and Engineering, Southeast University;
  • 关键词:双质量硅微机械陀螺仪 ; 带宽拓展 ; 比例-积分串联相位超前 ; 模型仿真
  • 英文关键词:dual-mess MEMS gyroscope;;bandwidth expanding;;proportional integral phase lead controller;;model simulation
  • 中文刊名:ZGXJ
  • 英文刊名:Journal of Chinese Inertial Technology
  • 机构:中北大学仪器科学与动态测试教育部重点实验室;中北大学电子测试技术国防科技重点实验室;东南大学仪器科学与工程学院;
  • 出版日期:2016-04-15
  • 出版单位:中国惯性技术学报
  • 年:2016
  • 期:v.24
  • 基金:国家杰出青年科学基金(51225504);; 973(2012CB723404);; 总装预研基金项目(9140A09011313JW06119);; 江苏省科技攻关项目(BE2014003-3);; 中北大学校基金
  • 语种:中文;
  • 页:ZGXJ201602015
  • 页数:6
  • CN:02
  • ISSN:12-1222/O3
  • 分类号:84-89
摘要
检测开环状态下,微机械陀螺的实际工作带宽约为驱动和检测模态固有频率差值(?f)的一半,而陀螺结构的机械灵敏度与Δf成反比,较高的机械灵敏度有助于优化陀螺的噪声特性。本文提出了一种较为通用的陀螺带宽拓展方法,在使陀螺拥有较好的机械灵敏度基础上有效提高陀螺带宽以增强其动态环境适应性。首先,建立了陀螺检测系统的模型,并进一步得到了陀螺结构的传递函数和机械带宽。其次,分析了带宽拓展控制器的系统特性,设计了基于比例-积分串联相位超前控制方法的带宽拓展控制器,并对其进行了系统级和电路级仿真,验证了设计参数。最后进行了测试,结果表明采用本文所述方法可将陀螺带宽从原有的13 Hz拓展到了104 Hz,且具有较好的带内平整度,验证了设计方案。
        In open-loop sense mode, the working bandwidth of MEMS gyroscope is about half of Δf(the frequency gap between drive and sense modes), and the mechanical sensitivity of gyro structure is inversely proportional to Δf, and higher mechanical sensitivity contributes to optimizing the gyro's noise characteristics. This paper proposes a method for gyro bandwidth extension, which breaks the conflict between mechanical sensitivity and bandwidth. The sense loop system model is established, and the transform function and the mechanical bandwidth are analyzed. The bandwidth expanding controller is investigated, which employs the proportional integral phase lead technology. The controller is simulated in both system and circuit levels, and the design parameters are proved. Test results show that the bandwidth is expanded from 13 Hz to 104 Hz by the controller, and the flatness in bandwidth is better, which prove the effectiveness of the proposed method.
引文
[1]曹慧亮,李宏生,王寿荣,等.MEMS陀螺仪结构模型及系统仿真[J].中国惯性技术学报,2013,21(4):524-529.Cao Hui-liang,Li Hong-sheng,Wang Shou-rong,et al.Structure model and system simulation of MEMS gyroscope[J].Journal of Chinese Inertial Technology,2013,21(4):524-529.
    [2]杨波,吴磊,周浩,等.双质量解耦硅微陀螺仪的非理想解耦特性研究和性能测试[J].中国惯性技术学报,2015,23(6):794-799.Yang Bo,Wu Lei,Zhou Hao,et al.Non-ideal decoupled characteristics’research and system performance test of dual-mass decoupled silicon micro-gyroscope[J].Journal of Chinese Inertial Technology,2015,23(6):794-799.
    [3]Cao Hui-liang,Li Hong-sheng.Investigation of a vacuum packaged MEMS gyroscope architecture’s temperature robustness[J].International Journal of Applied Electromagnetics and Mechanics,2013,41:495-506.
    [4]Shkel A M.Precision navigation and timing enabled by microtechnology:Are we there yet?[C]//Proceedings of the ION 2013 Pacific PNT Meeting.Honolulu,Hawaii,2013:1049-1053.
    [5]Erdinc T,Said E A,Tayfun A.Quadrature-error compensation and corresponding effects on the performance of fully decoupled MEMS gyroscopes[J].Journal of Micro-electromechanical Systems,2012,21(3):656-667.
    [6]Chaumet B,et al.A new silicon tuning fork gyroscope for aerospace applications[C]//Symposium Gyro Technology2009:1.1-1.13.
    [7]Zaman M F,Sharma A,Hao Zhili,et al.A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-perhour Allan deviation bias instability[J].Journal of Microelectromechanical Systems,2008,17(6):1526-1536.
    [8]Yang Cheng,Li Hong-sheng.Digital control system for the MEMS tuning fork gyroscope based on synchronous integral demodulator[J].IEEE Sensors Journal,2015,15(10):5755-5764.
    [9]Antonello R,Oboe R.Exploring the potential of MEMS gyroscopes[J].IEEE Industrial Electronics Magazine,2012,6(1):14-24.
    [10]Bao Min-hang.Micro Mechanical Transducers Pressure Sensors,Accelerometers and Gyroscopes[M].1st ed.Amsterdam,The Netherlands:Elsevier,2000.
    [11]He Chun-hua,Zhao Qian-cheng,Liu Yu-xian,et al.Closed loop control design for the sense mode of micromachined vibratory gyroscopes[J].Science China Technological Sciences,2013,56(5):1112-1118.
    [12]Cui Jian,Guo Zhong-yang,Zhao Qian-cheng,et al.Force rebalance controller synthesis for a micromachined vibratory gyroscope based on sensitivity margin specifications[J].Journal of Microelectromechanical Systems,2011,20(6):1382-1394.
    [13]Xiao Ding-bang,Su Jian-bin,Chen Zhi-hua,et al.Improvement of mechanical performance for vibratory microgyroscope based on sense mode closed-loop control[J].Journal of Micro-Nanolithography MEMS and MOEMS,2013,12(2),023001.
    [14]杨军,高钟毓,张嵘,等.微机械陀螺仪结构误差的控制技术[J].中国惯性技术学报,2007,15(4):488-493.Yang Jun,Gao Zhong-yu,Zhang Rong,et al.Feedback control strategy suppressing structural error in MEMS gyroscope[J].Journal of Chinese Inertial Technology,2007,15(4):488-493.
    [15]Ding Hai-tao,Yang Zhen-chuan,Yan Gui-zhen,et al.MEMS gyroscope control system using a band-pass continuous-time sigma-delta modulator[C]//IEEE Sensors Conference.2010:868-872.
    [16]曹慧亮.硅微机械陀螺仪静电补偿与控制技术研究和实验[D].南京:东南大学,2014.Cao Hui-liang.Research and experiment on the technology of electrostatic compensation and control of silicon micro-machined gyroscope[D].Nanjing:Southeast University,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700