2-DOF绳索驱动并联机构轨迹跟踪控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Trajectory tracking control of a 2-DOF cable-driven parallel mechanism
  • 作者:姜雷杰 ; 高丙团 ; 刘传德 ; 朱振宇
  • 英文作者:JIANG Lei-jie;GAO Bing-tuan;LIU Chuan-de;ZHU Zhen-yu;School of Electrical Engineering,Southeast University;
  • 关键词:绳索驱动 ; 拉格朗日方程 ; PD控制 ; 前馈控制 ; 轨迹跟踪
  • 英文关键词:cable-driven;;Lagrange's equation;;PD control;;feed-forward control;;trajectory tracking
  • 中文刊名:KZYC
  • 英文刊名:Control and Decision
  • 机构:东南大学电气工程学院;
  • 出版日期:2018-03-08 15:39
  • 出版单位:控制与决策
  • 年:2019
  • 期:v.34
  • 基金:东南大学优秀青年教师科研计划项目(2242015R30024);; 江苏省“六大人才高峰”第十一批高层次人才计划项目(2014-ZBZZ-001)
  • 语种:中文;
  • 页:KZYC201905026
  • 页数:6
  • CN:05
  • ISSN:21-1124/TP
  • 分类号:210-215
摘要
基于PD控制和前馈控制方法,对2-DOF的绳索驱动并联机构的空间运动控制问题进行研究.首先,基于拉格朗日方程建立系统的空间运动数学模型.为了保证所有绳索在机构的工作空间范围内始终处于张紧状态,绳索内力原则被应用于所提的控制方法中.然后,基于李雅普诺夫稳定性理论,给出闭环系统的稳定性证明.最后,为了检验所提控制策略的正确性,给出仿真和实验结果.仿真和实验结果的近似一致性证明了所提控制策略的有效性和合理性.
        The space motion control problem of a 2-DOF cable-driven parallel mechanism is studied based on PD control and feed-forward control method. Firstly, the space motion mathematical model of the system is formulated based on the Lagrange's equation. In order to ensure that all the cables have always remained in tension in the workspace of the mechanism, the cable internal force principle is applied to the proposed control method. Then, based on the Lyapunov stability theory, the stability of the closed-loop system is proved. Finally, to test the correctness of the proposed control strategy, simulation and experiment results are given. Approximate consistency between simulation and experimental results proves the validity and the rationality of the proposed control strategy.
引文
[1] Kawamura S, Kino H, Won C. High-speed manipulation by using parallel wire-driven robots[J]. Robotica, 2000,18(1):13-21.
    [2] Taghirad H D, Nahon M. Kinematic analysis of a macro–micro redundantly actuated parallel manipulator[J].Advanced Robotics, 2008, 22(6/7):657-687.
    [3] Cone L L. Skycam-an aerial robotic camera system[J].Byte, 1985, 10(10):122-132.
    [4] Bostelman R, Albus J, Dagalakis N, et al. Applications of the NIST RoboCrane[C]. Proc of the 5th Int Symposium on Robotics and Manufacturing. Maui:American Society of Mechanical Engineers, 1994:14-18.
    [5] Boehler Q, Abdelaziz S, Vedrines M, et al. From modeling to control of a variable stiffness device based on a cable-driven tensegrity mechanism[J]. Mechanism and Machine Theory, 2017, 107:1-12.
    [6] Zhang N, Shang W. Dynamic trajectory planning of a3-DOF under-constrained cable-driven parallel robot[J].Mechanism and Machine Theory, 2016, 98:21-35.
    [7] Albus J, Bostelman R, Dagalakis N. The NIST robocrane[J]. J of National Institute of Standards and Technology, 1992, 97(3):373-385.
    [8] Du J, Bao H, Cui C. Stiffness and dexterous performances optimization of large workspace cable-driven parallel manipulators[J]. Advanced Robotics, 2014, 28(3):187-196.
    [9] Tang X, Shao Z. Trajectory generation and tracking control of a multi-level hybrid support manipulator in FAST[J]. Mechatronics, 2013, 23(8):1113-1122.
    [10] Rus D, Tolley M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553):467-475.
    [11] Yang Y, Zhang W. An elephant-trunk manipulator with twisting flexional rods[C]. IEEE Int Conf on Robotics and Biomimetics. Zhuhai:IEEE, 2015:13-18.
    [12] Laschi C, Cianchetti M, Mazzolai B, et al. Soft robot arm inspired by the octopus[J]. Advanced Robotics, 2012,26(7):709-727.
    [13] Behzadipour S, Khajepour A. Stiffness of cable-based parallel manipulators with application to stability analysis[J]. J of mechanical design, 2006, 128(1):303-310.
    [14]张达,原大宁,刘宏昭. 3-UPS/PU并联机构动力学建模及自适应滑模控制[J].机械科学与技术, 2017, 36(2):232-238.(Zhang D, Yuan D N, Liu H Z. Dynamic modeling and adaptive sliding mode control of 3-UPS/PU parallel mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(2):232-238.)
    [15] Wang J, Wu J, Wang L, et al. Dynamic feed-forward control of a parallel kinematic machine[J]. Mechatronics,2009, 19(3):313-324.
    [16]王跃灵,沈书坤,王洪斌. 2-DOF并联机构动力学建模与迭代学习控制[J].计算机工程, 2009, 35(17):163-166.(Wang Y L, Shen S K, Wang H B. Dynamic modeling and iterative learning control of 2-DOF parallel mechanism[J]. Computer Engineering, 2009, 35(17):163-166.)
    [17]孙黎霞,宋洪刚,高丙团,等.仿生柔性并联机器人的逆运动学与优化设计[J].东南大学学报:自然科学版,2013, 43(4):736-741.(Sun L X, Song H G, Gao B T, et al. Inverse kinematics and optimal design of bio-inspired flexible parallel robot[J]. J of Southeast University:Natural Science Edition, 2013,43(4):736-741.)
    [18] Jiang L, Gao B, Zhu Z. Design and nonlinear control of a 2-DOF flexible parallel humanoid arm joint robot[J]. Shock and Vibration, 2017, DOI:https://doi.org/10.1155/2017/2762169.
    [19] Du J, Bao H, Cui C, et al. Dynamic analysis of cable-driven parallel manipulators with time-varying cable lengths[J]. Finite Elements in Analysis and Design,2012, 48(1):1392-1399.
    [20] Jiang L, Gao B, Zhao J. Kinematic and static analysis of a cable-driven parallel robot with a flexible link spine[C].IEEE Int Conf on Robotics and Biomimetics. Zhuhai:IEEE, 2015:31-36.
    [21] Lim W B, Yeo S H, Yang G. Optimization of tension distribution for cable-driven manipulators using tension-level index[J]. IEEE/ASME Trans on Mechatronics, 2014, 19(2):676-683.
    [22]范伟,彭光正,高建英,等.气动人工肌肉驱动球面并联机器人的力控制研究[J].机器人, 2004, 26(4):336-341.(Fan W, Peng G Z, Gao J Y, et al. Study on the force control of a spherical parallel robot actuated by pneumatic muscle actuators[J]. Robot, 2004, 26(4):336-341.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700