不同林龄杉木人工林菌根侵染特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the characteristics of mycorrhizal colonization in Chinese fir plantations at different ages
  • 作者:崔莉娜 ; 郭弘婷 ; 李维扬 ; 王金平 ; 黄章翰 ; 张金池 ; 刘光正 ; 王丽艳 ; 姜姜
  • 英文作者:CUI Lina;GUO Hongting;LI Weiyang;WANG Jinping;HUANG Zhanghan;ZHANG Jinchi;LIU Guangzheng;WANG Liyan;JIANG Jiang;Co-Innovation Center of Sustainable Forestry in Southern China, Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Nanjing Forestry University;Jiangxi Academy of Forestry;
  • 关键词:杉木人工林 ; 丛枝菌根真菌 ; 菌根侵染率 ; 孢子密度
  • 英文关键词:Chinese fir plantation;;arbuscular mycorrhizal fungi;;mycorrhizal colonization rate;;spore density
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:南方现代林业协同创新中心南京林业大学江苏省水土保持与生态修复重点实验室;江西省林业科学研究院;
  • 出版日期:2019-03-23
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家重点研发计划项目(2017YFC0505500,2017YFC0505502);; 江苏高校品牌专业建设工程资助项目(PPZY2015A062)
  • 语种:中文;
  • 页:STXB201906006
  • 页数:9
  • CN:06
  • ISSN:11-2031/Q
  • 分类号:53-61
摘要
丛枝菌根真菌是一种通过土壤侵染植物根系,与寄主植物互利共生的重要有益真菌。探究不同林龄杉木林中菌根侵染状况与土壤养分的变化规律,有利于深入认识丛枝菌根真菌—杉木相互作用的养分调控因素,从而为改善杉木人工林土壤肥力、促进杉木林可持续经营提供依据。分别选取10a、25a、45a杉木纯林,分析了不同林分菌根侵染率与孢子密度及部分土壤养分因子(全磷、速效磷、全钾、速效钾)的关系。结果表明:(1)菌根侵染率与孢子密度均呈现出随林龄增大而增大的趋势,pH随林龄增大而减少的趋势;(2)根际土中磷的含量总体偏低,而且受到土壤酸化流失和丛枝菌根真菌积累的双重影响呈现出先减少后增加的趋势;(3)虽然有效钾含量随林龄变化趋势不显著,但丛枝菌根真菌能促进土壤钾的积累。因此,丛枝菌根真菌能有效调控根际土的养分动力学特征,减缓土壤酸化造成的养分流失。
        Arbuscular mycorrhizal fungi(AMF) are important beneficial fungi that colonize plant roots through soil and mutually coexist with host plants. Exploring the changes in soil nutrients and mycorrhizal colonization status of Chinese fir forests of different ages could be benefit for in-depth understanding of the interactions between nutrients and mycorrhizal fungi in fir forest, providing suggestions for the improvement of soil fertility and promoting sustainable management of Chinese fir forest. In this study, 10-year-old(10 a), 25-year-old(25 a), and 45-year-old(45 a) pure Chinese fir forests were selected, and the relationships between mycorrhizal colonization rate, spore density and rhizosphere soil nutrients(total phosphorus, available phosphorus, total potassium, and available potassium) were analyzed. The results showed that:(1) Both mycorrhizal colonization rate and spore density increased with forest age, while pH decreased with forest age.(2) The content of phosphorus in the rhizosphere soil is low. With the effects of soil acidification and arbuscular mycorrhizal fungal accumulation, rhizosphere phosphorus exhibited a trend of U shape.(3) Although the content of available potassium did not change with stand age significantly, the arbuscular mycorrhizal fungi promoted the accumulation of potassium in the rhizosphere soil. Therefore, arbuscular mycorrhizal fungi can effectively regulate the nutrient dynamics of rhizosphere soil and slow down the nutrient loss caused by soil acidification.
引文
[1] 卢妮妮,张鹏,徐雪蕾,刘晓兰,李振林,王新杰,彭道黎.杉木林地土壤微生物研究进展.世界林业研究,2017,30(5):8-12.
    [2] 赵均嵘.杉木林生态系统转换对土壤磷形态的影响及其机制[D].福建农林大学,2012.
    [3] 郭琦,王新杰,衣晓丹.不同林龄杉木纯林林下生物量与土壤理化性质的相关性.东北林业大学学报,2014,42(3):85-88.
    [4] 杨超,田大伦,康文星,项文化,闫文德,方晰,梁小翠.连栽14年生杉木林生态系统生物量的结构特征.中南林业科技大学学报,2011,31(5):1-6.
    [5] 涂宏涛,万杰,孙玉军,梅光义,刘素真.不同林龄杉木人工林根生物量及其相容性模型.南京林业大学学报(自然科学版),2015,39(6):81-86.
    [6] 涂宏涛,孙玉军,刘素真,董云飞,方景.亚热带杉木人工林生物量及其碳储量分布——以福建将乐县杉木人工林为例.中南林业科技大学学报,2015,35(7):94-99.
    [7] 曾伟,江斌,熊彩云,肖复明,张开珍.江西省不同林龄杉木碳储量分配格局.中国农学通报,2015,31(28):1-5.
    [8] 兰斯安,杜虎,曾馥平,宋同清,彭晚霞,韩畅,陈莉,苏樑.不同林龄杉木人工林碳储量及其分配格局.应用生态学报,2016,27(4):1125-1134.
    [9] 李秋玲,凌婉婷,高彦征,李福春,熊巍.丛枝菌根对有机污染土壤的修复作用及机理.应用生态学报,2006,17(11):2217-2221.
    [10] Augé R M.Water relations,drought and vesicular-arbuscular mycorrhizal symbiosis.Mycorrhiza,2001,11(1):3-42.
    [11] Allen E B,Allen M F,Helm D J.Patterns and regulation of mycorrhizal plant and fungal diversity.Plant & Soil,1995,170(1):47-62.
    [12] Gong M,Tang M,Zhang Q.Effects of climatic and edaphic factors on arbuscular mycorrhizal fungi in the rhizosphere of Hippophae rhamnoides in the Loess Plateau,China.Acta Ecologica Sinica,2012,32(2):62-67.
    [13] 刘振坤,田帅,唐明.不同树龄刺槐林丛枝菌根真菌的空间分布及与根际土壤因子的关系.林业科学,2013,49(8):89-95.
    [14] 钟思远,张静,童琳,高一飞,夏艳菊,唐旭利.南亚热带森林优势树种氮、磷可利用性与菌根侵染率的关系.生态环境学报,2016,25(12):1929-1936.
    [15] Hoffland E,Boogaard R V D,Nelemans J.Biosynthesis and root exudation of citric and malic acids in phosphate‐starved rape plants.New Phytologist,2010,122(4):675-680.
    [16] Lipton D S,Blanchar R W,Blevins D G.Citrate,Malate,and Succinate Concentration in Exudates from P-Sufficient and P-Stressed Medicago sativa L.Seedlings.Plant Physiology,1987,85(2):315-317.
    [17] Clegg S,Gobran G R,Guan X.Rhizosphere chemistry in an ammonium sulfate and water manipulated Norway spruce [Picea abies (L.) Karst.] forest..Canadian Journal of Soil Science,1997,77(4):525-533.
    [18] 鲁如坤.土壤农业化学分析方法[Z].北京:中国农业科技出版社,2000.
    [19] 李卿叁.杉木林生态系统转换对土壤铝形态的影响及其机制[D].福建农林大学,2011.
    [20] 贾兴永,李菊梅.土壤磷有效性及其与土壤性质关系的研究.中国土壤与肥料,2011,13(6):76-82.
    [21] 李学敏,张劲苗.河北潮土磷素状态的研究.土壤通报,1994,25(6):259-260.
    [22] 张美庆,王幼珊,张弛,黄磊.我国北方VA菌根真菌某些属和种的生态分布.真菌学报,1994,13(3):166-172.
    [23] Dinkelaker B,Hehgler C,Neumann G.Root exudates and mobilization of nutrients.Trees Contributions to Modern Tree Physiology,1997,441-451.
    [24] Marschner H.Mineral nutrition of higher plants..Journal of Ecology,2012,76(4):1250.
    [25] 陈安娜,王光军,陈婵,李淑英,李维佳.亚热带不同林龄杉木林叶-根-土氮磷化学计量特征.生态学报,2018,38(11):4027-4036.
    [26] Lipton D S,Blanchar R W,Blevins D G.Citrate,Malate,and Succinate Concentration in Exudates from P-Sufficient and P-Stressed Medicago sativa L.Seedlings.Plant Physiology,1987,85(2):315-317.
    [27] 曹娟,闫文德,项文化,谌小勇,雷丕锋,向建林.湖南会同不同年龄杉木人工林土壤磷素特征.生态学报,2014,34(22):6519-6527.
    [28] 叶钰倩,赵家豪,刘畅,关庆伟.间伐对马尾松人工林根际土壤磷组分的影响.生态学杂志,2018,37(5):1364-1370.
    [29] Chuong DAO Ngoc,林达,洪森先,田野,方升佐.间伐对杨树人工林土壤微生物量和氮含量的影响.森林与环境学报,2016,36(4):416-422.
    [30] 张社奇,王国栋,张蕾.黄土高原刺槐林对土壤养分时空分布的影响.水土保持学报,2008,22(5):91-95.
    [31] 张远,李火根,蒋祥英,戴其生,张焕朝,宋宏林,张井义.土壤因子对杂交鹅掌楸幼林生长的影响.浙江农林大学学报,2016,33(1):94-101.
    [32] 尹永强,何明雄,邓明军.土壤酸化对土壤养分及烟叶品质的影响及改良措施.中国烟草科学,2008,29(1):51-54.
    [33] Cheng S,Widden P,Messier C.Light and tree size influence belowground development in yellow birch and sugar maple.Plant & Soil,2005,270(1):321-330.
    [34] 马玉颖,张焕朝,项兴佳,王道中,郭熙盛,郭志彬.长期施肥对砂姜黑土丛枝菌根真菌群落的影响.应用生态学报,2018,29(10):3398-3406.
    [35] 章志琴.杉木与阔叶树凋落物分解特征的比较及其混合分解研究[D].福建农林大学,2005.
    [36] 盖京苹,冯固,李晓林.我国北方农田土壤中AM真菌的多样性.生物多样性,2004,12(4):435-440.
    [37] Bai C,He X,Tang H.Spatial distribution of arbuscular mycorrhizal fungi,glomalin and soil enzymes under the canopy of Astragalus adsurgens Pall.in the Mu Us sandland,China.Soil Biology & Biochemistry,2009,41(5):941-947.
    [38] 盖京苹,刘润进.土壤因子对野生植物AM真菌的影响.应用生态学报,2003,14(3):470-472.
    [39] 张倩.植物相互作用与丛枝菌根真菌[D].浙江大学,2011.
    [40] Keitaro Tawaraya,Masanori Saito,Mikio Morioka.Effect of phosphate application to arbuscular mycorrhizal onion on the development and succinate dehydrogenase activity of internal hyphae.Soil Science & Plant Nutrition,1994,40(4):667-673.
    [41] 李蓉,周德明,吴毅,周国英,黄鹏飞,邓小军.杉木根际溶磷菌筛选及其部分特性的初步研究.中南林业科技大学学报,2012,32(4):95-99.
    [42] 王树和,王晓娟,王茜,金樑.丛枝菌根及其宿主植物对根际微生物作用的响应.草业学报,2007,16(3):108-113.
    [43] Vessey J K,Pawlowski K,Bergman B.Root-based N 2 -fixing symbioses:Legumes,actinorhizal plants,Parasponia sp.and cycads.Plant & Soil,2005,266(1-2):205-230.
    [44] Zhu Y G,Smith S E,Barritt A R.Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars.Plant & Soil,2001,237(2):249-255.
    [45] Vierheilig H,Bago B,Lerat S.Shoot-produced,light-dependent factors are partially involved in the expression of the arbuscular mycorrhizal (AM) status of AM host and non-host plants.Journal of Plant Nutrition and Soil Science,2002,165:21-25.
    [46] 陈雪冬,唐明,张新璐,周远博,韦素贞,盛敏.黄土高原刺槐纯林的土壤-菌根关系及随林龄的变化.林业科学,2017,53(12):84-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700