MEMS加速度开关的冲击失效仿真分析与试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact failure simulation analysis and experiment of MEMS acceleration switches
  • 作者:丁丽梅 ; 李世中 ; 段荣杰 ; 杨乐
  • 英文作者:DING Li-mei;LI Shi-zhong;DUAN Rong-jie;YANG Le;College of Mechatronic Engineering,North University of China;
  • 关键词:微机电系统 ; 加速度开关 ; 冲击载荷 ; 失效仿真 ; 锤击试验
  • 英文关键词:microelectromechanical system(MEMS);;acceleration switch;;impact load;;failure simulation;;hammer test
  • 中文刊名:JDGC
  • 英文刊名:Journal of Mechanical & Electrical Engineering
  • 机构:中北大学机电工程学院;
  • 出版日期:2019-02-19 09:37
  • 出版单位:机电工程
  • 年:2019
  • 期:v.36;No.288
  • 语种:中文;
  • 页:JDGC201902016
  • 页数:4
  • CN:02
  • ISSN:33-1088/TH
  • 分类号:95-98
摘要
针对微机电系统(MEMS)器件的低可靠性问题,以MEMS加速度开关为研究对象,利用ANSYS有限元分析软件,采用"扭梁-悬臂梁-质量块"结构作为MEMS加速度开关主要作用部分,建立了开关的有限元模型。对MEMS加速度开关3个方向上的跌落冲击情况进行了有限元分析;通过仿真计算分析,得到了器件在冲击载荷作用下的最大量级,分析了导致加速度开关不能作用的主要失效模式;利用马歇特锤击实验平台进行了冲击试验,得到了加速度开关冲击失效的极限量级,证明了MEMS加速度开关的主要失效模式为断裂失效。研究结果表明:针对MEMS加速度开关主要失效模式的仿真分析结果可靠,与试验验证结论相符。
        Aiming at the problem of poor reliability of MEMS devices,regarding MEMS acceleration switch as the research object,ANSYS finite element analysis of ware was used,and the main part of the MEMS acceleration switch was the structure of the"block torsion beam-cantilever beam-quality". The finite element model of the switch was established,and the finite element analysis of the drop impact in the three directions of the MEMS acceleration switch was carried out. Through simulation calculation and analysis,the maximum magnitude of the device under the impact load was obtained,and the failure mode of acceleration switch was analyzed. The impact test was verified by the Marshall hammer test platform,the limit magnitude of the acceleration switch impact failure was obtained,and the main failure mode of the MEMS acceleration switch was fracture failure. The results indicate that the simulation analysis results of the main failure modes of the MEMS acceleration switch are reliable and consistent with the test results.
引文
[1]陈天佐,张琦,任德洁.关于MEMS器件失效机理的讨论[J].电子产品可靠性与环境试验,2018,36(1):39-42.
    [2]雷昕,谢劲松. MEMS惯性传感器可靠性试验方法研究[J].电子产品可靠性与环境试验,2009(6):13-18.
    [3]郭永献,梁丽萍,张大兴.微机电系统开关可靠性及失效分析[J].金属热处理,2007(z1):405-408.
    [4]许建军,孔学东,李斌,等. MEMS及微机械加速度计可靠性研究[J].电子产品可靠性与环境试验,2006(5):64-67.
    [5]朱应敏. MEMS开关关键技术研究[D].西安:西安电子科技大学机电工程学院,2013.
    [6]潘晓琳,张亚,李波. MEMS开关悬臂梁建模及有限元分析[J].机械,2013,40(11):57-59.
    [7]陈俊光,谷专元,何春华,等. MEMS惯性器件的主要失效模式和失效机理研究[J].传感器与微系统,2017,36(3):1-5,13.
    [8] HE Chun-hua,ZHAO Qian-cheng,HUANG Qin-wen,et al. A novel robust design method for the sense mode of a MEMS vibratory gyroscope based on fuzzy reliability and Taguchidesign[J]. Science China(Technological Sciences),2017,60(2):317-324.
    [9]吕劲楠,唐洁影. MEMS微悬臂梁在冲击环境下的可靠性[J].功能材料与器件学报,2008(1):103-106.
    [10] FANG Xu-wen,HUANG Qing-an,TANG Jie-ying. Modeling of MEMS reliability in shock environments[C]. International Conference on Solid-State and Integrated Circuits Technology,Beijing:IEEE,2004.
    [11]陈鹏霏,刘海芳,贺宇新.基于虚拟可靠性试验的多体机械系统分析方法[J].石油机械,2014,42(5):20-24.
    [12]杨江涛,马喜宏,邬琦.微加速度计在冲击环境下的力学分析与仿真[J].压电与声光,2015,37(2):311-315,319.
    [13]王占勇,王晓刚,郭刚.飞机离心传感器测试装置的设计与实验[J].液压气动与密封,2017(3):49-53.
    [14]李丹丹,梁庭,李赛男,等.基于MEMS工艺的SOI高温压力传感器设计[J].传感技术学报,2015,28(9):1315-1320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700