非共振耗散腔耦合系统的发射光谱
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Emission Spectrum of Off-resonant Dissipative Cavity Coupled System
  • 作者:张杨 ; 吕树臣
  • 英文作者:ZHANG Yang;LYU Shu-chen;Key Laboratory of Photoelectric Bandgap Materials,Ministry of Education,Harbin Normal University;
  • 关键词:量子主方程 ; 非共振耦合 ; 失相 ; 发射光谱
  • 英文关键词:quantum master equation;;non-resonant coupling;;dephasing;;emission spectrum
  • 中文刊名:FGXB
  • 英文刊名:Chinese Journal of Luminescence
  • 机构:哈尔滨师范大学光电带隙材料教育部重点实验室;
  • 出版日期:2019-05-13
  • 出版单位:发光学报
  • 年:2019
  • 期:v.40
  • 基金:哈尔滨市科技局科技创新人才研究基金(2014RFXXJ091)资助项目~~
  • 语种:中文;
  • 页:FGXB201905012
  • 页数:9
  • CN:05
  • ISSN:22-1116/O4
  • 分类号:97-105
摘要
研究了非共振耗散二能级双原子与双单模腔耦合系统发射光谱的性质。探讨了原子和腔场之间的失谐、腔场衰减率及原子失相对该系统发射光谱的影响。结果表明,体系的腔场谱呈现出三重峰结构,原子发射谱呈现出二重峰结构。非共振情况时,腔场谱和原子发射谱的图像皆为非对称图像。在原子与腔场失谐时,与共振情况相比,峰位发生了明显的漂移,且中峰明显增大。增大腔场与原子的失谐,会引起边峰向低频段漂移,并改变其光谱强度;增大原子与腔场的失谐,可以使光谱整体向低频段漂移,并改变其所有峰的光谱强度。随着腔场衰减率的增大,共振情况下,会导致边峰的强度减小;失谐情况下,会导致所有峰的强度均减小。随着原子失相的增大,共振或失谐情况下,会使光谱所有峰的强度均减小。
        In this paper, the properties of emission spectra of two double-level atoms coupled with two single-mode cavity system with off-resonant dissipation were studied. We investigated the effects of the detuning between the atom and the cavity field, the cavity decay rate and the atom dephasing on emission spectra of the system. The results show that the cavity field spectrum of the system presents three peak structure and the atomic emission spectrum presents double peak structure. In the case of detuning, both the cavity field spectrum and the atomic emission spectrum are asymmetric. When the atom and cavity field are off-resonant compared with the resonance condition, the peak position has obvious drift and the middle peak has obvious increase. Increasing the detuning between cavity field and atom will cause the edge peak to drift to low frequency and change its spectral intensity. Increasing the detuning between atoms and cavity field can make the spectrum drift to low frequency and change the spectral intensity of all peaks. As the decay rate of cavity field increases, the intensity of edge peak will decrease under the condition of resonance. In the case of detuning, the strength of all peaks will reduce. As the atom dephasing increases, the intensity of all peaks of the spectrum will reduce in the case of resonance or off-resonant.
引文
[1] PENG J,WU Y W,LI X J.Quantum dynamic behaviour in a coupled cavities system [J].Chin.Phys.B,2012,21(6):060302-1-7.
    [2] ZHONG Z R,LIN X,ZHANG B,et al..Dynamics of a coupled cavity system composed of three cavities [J].Int.J.Quantum Inf.,2012,10(6):1250070-1-17.
    [3] ZHANG W,DING D S,SHENG Y B,et al..Quantum secure direct communication with quantum memory [J].Phys.Rev.Lett.,2017,118(22):220501.
    [4] SNIJDERS H J,FREY J A,NORMAN J,et al..Fiber-coupled cavity-QED source of identical single photons [J].Phys.Rev.Appl.,2018,9(3):031002-1-6.
    [5] KIM M D,KIM J.Scalable quantum computing model in the circuit-QED lattice with circulator function [J].Quantum Inf.Process.,2017,16(8):192-1-13.
    [6] WANG X L,CHEN L K,LI W,et al..Experimental ten-photon entanglement [J].Phys.Rev.Lett.,2016,117(21):210502-1-6.
    [7] JAYNES E T,CUMMINGS F W.Comparison of quantum and semiclassical radiation theories with application to the beam maser [J].Proc.IEEE,1963,51(1):89-109.
    [8] 农春选,李明,陈翠玲.Ξ型三能级原子玻色-爱因斯坦凝聚体单模光场系统中双模原子激光的压缩性质 [J].物理学报,2014,63(4):043202-1-5.NONG C X,LI M,CHEN C L.Squeezing properties of two-mode atom laser in a system of Ξ-type three-level atomic Bose-Einstein condensate interacting with single-mode light field [J].Acta Phys.Sinica,2014,63(4):043202-1-5.(in Chinese)
    [9] PETER E,SENELLART P,MARTROU D,et al..Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity [J].Phys.Rev.Lett.,2005,95(6):067401-1-4.
    [10] KNIGHT P L,RADMORE P M.Quantum origin of dephasing and revivals in the coherent-state Jaynes-Cummings model [J].Phys.Rev.A,1982,26(1):676-679.
    [11] BRUNE M,SCHMIDT-KALER F,MAALI A,et al..Quantum Rabi oscillation:a direct test of field quantization in a cavity [J].Phys.Rev.Lett.,1996,76(11):1800-1803.
    [12] WANG Y Y,WANG J C,LIU S T.The Wigner function and phase properties of superposition of two coherent states with the vacuum state [J].Chin.Phys.B,2010,19(7):074206-1-8.
    [13] TAVIS M,CUMMINGS F W.Exact solution for an N-molecule—radiation-field Hamiltonian [J].Phys.Rev.,1968,170(2):379-384.
    [14] JARLOV C,WODEY é,LYASOTA A,et al..Effect of pure dephasing and phonon scattering on the coupling of semiconductor quantum dots to optical cavities [J].Phys.Rev.Lett.,2016,117(7):076801-1-6.
    [15] PENG B,?ZDEMIR ? K,LEI F C,et al..Parity-time-symmetric whispering-gallery microcavities [J].Nat.Phys.,2014,10(5):394-398.
    [16] CHANG L,JIANG X S,HUA S Y,et al..Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators [J].Nat.Photon.,2014,8(7):524-529.
    [17] AUFFèVES A,BESGA B,GéRARD J M,et al..Spontaneous emission spectrum of a two-level atom in a very-high-Q cavity [J].Phys.Rev.A,2008,77(6):063833-1-9.
    [18] HE L S,FENG X L.Two-photon emission spectrum of a two-level atom in an ideal cavity [J].Phys.Rev.A,1994,49(5):4009-4015.
    [19] ZHANG Y Q,TAN L,BARKER P.Effects of dipole-dipole interaction on the transmitted spectrum of two-level atoms trapped in an optical cavity [J].Phys.Rev.A,2014,89(4):043838-1-6.
    [20] MIRZA I M.Strong coupling optical spectra in dipole-dipole interacting optomechanical Tavis-cummings models [J].Opt.Lett.,2016,41(11):2422-2425.
    [21] ZHANG K,LI Z Y.Transfer behavior of quantum states between atoms in photonic crystal coupled cavities [J].Phys.Rev.A,2010,81(3):033843-1-10.
    [22] WANG Z H,XU X W,LI Y.Partially dark optical molecule via phase control [J].Phys.Rev.A,2017,95(1):013815-1-6.
    [23] FERRETTI S,ANDREANI L C,TüRECI H E,et al..Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation [J].Phys.Rev.A,2010,82(1):013841-1-8.
    [24] PRESS D,G?TZINGER S,REITZENSTEIN S,et al..Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime [J].Phys.Rev.Lett.,2007,98(11):117402-1-5.
    [25] YAMAGUCHI M,ASANO T,NODA S.Third emission mechanism in solid-state nanocavity quantum electrodynamics [J].Rep.Prog.Phys.,2012,75(9):096401-1-29.
    [26] HENNESSY K,BADOLATO A,WINGER M,et al..Quantum nature of a strongly coupled single quantum dot-cavity system [J].Nature,2007,445(7130):896-899.
    [27] OTA Y,KUMAGAI N,OHKOUCHI S,et al..Investigation of the spectral triplet in strongly coupled quantum dot-nanocavity system [J].Appl.Phys.Express,2009,2(12):122301-1-9.
    [28] SANTIAGO E A,HERBERT V P,EDGAR A G.Explanation of the quantum phenomenon of off-resonant cavity-mode emission [J].Phys.Rev.A,2018,97(4):043815-1-6.
    [29] NOHAMA F K,ROVERSI J A.Quantum state transfer between atoms located in coupled optical cavities [J].J.Mod.Opt.,2007,54(8):1139-1149.
    [30] WU H Z,YANG Z B,ZHENG S B.Two-photon absorption and emission by Rydberg atoms in coupled cavities [J].Phys.Rev.A,2013,88(4):043816-1-7.
    [31] YAO P J,PATHAK P K,ILLES E,et al..Nonlinear photoluminescence spectra from a quantum-dot-cavity system:interplay of pump-induced stimulated emission and anharmonic cavity QED [J].Phys.Rev.B,2010,81(3):033309-1-4.
    [32] ROY C,HUGHES S.Polaron master equation theory of the quantum-dot Mollow triplet in a semiconductor cavity-QED system [J].Phys.Rev.B,2012,85(11):115309-1-13.
    [33] ROY C,HUGHES S.Phonon-dressed Mollow triplet in the regime of cavity quantum electrodynamics:excitation-induced dephasing and nonperturbative cavity feeding effects [J].Phys.Rev.Lett.,2011,106(24):247403-1-4.
    [34] MAJUMDAR A,KIM E D,GONG Y Y.Phonon mediated off-resonant quantum dot-cavity coupling under resonant excitation of the quantum dot [J].Phys.Rev.B,2011,84(8):085309-1-7.
    [35] CUI G Q,RAYMER M G.Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime [J].Phys.Rev.A,2006,73(5):053807-1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700