烟草疫霉与拮抗菌解淀粉芽胞杆菌的代谢表型差异分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Differential Analysis between Phytophthora nicotianae from Tobacco and Its Antagonistic Bacterial Bacillus amyloliquefaciens in Metabolic Phenotypic Characterization
  • 作者:赵晓超 ; 陈乾丽 ; 杨双剑 ; 刘畅 ; 汪汉成
  • 英文作者:ZHAO Xiaochao;CHEN Qianli;YANG Shuangjian;LIU Chang;WANG Hancheng;Hubei Zhongyan Industry Co., Ltd.;College of Agriculture, Guizhou University;Guizhou Academy of Tobacco Science;Guizhou Tongren Tobacco Company;College of Life Sciences, Yangtze University;
  • 关键词:解淀粉芽胞杆菌 ; 烟草疫霉 ; 代谢表型
  • 英文关键词:Bacillus amyloliquefaciens;;Phytophthora nicotianae;;metabolic phenotypic characterization
  • 中文刊名:ZSWF
  • 英文刊名:Chinese Journal of Biological Control
  • 机构:湖北中烟工业有限责任公司;贵州大学农学院;贵州省烟草科学研究院;贵州省烟草公司铜仁市公司;长江大学生命科学学院;
  • 出版日期:2019-08-08
  • 出版单位:中国生物防治学报
  • 年:2019
  • 期:v.35
  • 基金:贵州省科技厅优秀青年人才培养计划(2017-5619);; 贵州省科技支撑计划(2018-2356);; 中国烟草总公司贵州省公司科技项目(201305,201711,201714)
  • 语种:中文;
  • 页:ZSWF201904015
  • 页数:8
  • CN:04
  • ISSN:11-5973/S
  • 分类号:112-119
摘要
烟草疫霉是引起烟草黑胫病的植物病原菌。笔者前期获得了一株对其有明显拮抗活性的解淀粉芽胞杆菌Bacillus amyloliquefaciens。为了评价该菌株作为烟草疫霉生防菌剂的应用潜力,本文采用Biolog代谢表型技术测定并比较了其和烟草疫霉近1000种代谢表型。结果表明,2种微生物的代谢指纹图谱差异较大。烟草疫霉和解淀粉芽胞杆菌分别能代谢74%、41%的供试碳源,96%、77%的供试氮源,98%、86%的供试磷源,100%、69%的供试硫源,分别具有94、91种生物合成途径,72、95种渗透压表型,及95、94种pH代谢表型。烟草疫霉代谢的碳源、氮源、磷源及硫源种类较解淀粉芽胞杆菌多,适应的渗透压环境数量较解淀粉芽胞杆菌少。解淀粉芽胞杆菌能高效代谢,同时烟草疫霉不能或较弱代谢的特征性碳源为D-葡萄糖胺。2种微生物在生物合成途径和p H环境适应力方面的代谢活力相当,均具有脱羧酶和脱氨酶活性。研究结果为解淀粉芽胞杆菌生防菌剂的开发和其防治烟草黑胫病的应用具有一定的参考意义。
        Phytophthora nicotianae is the phytopathogen that causes tobacco black shank. An antagonistic bacterial isolate Bacillus amyloliquefaciens was found in our early study, which presented high inhibition effect on P.nicotianae. In order to assess the potential application of this antagonistic bacterium, the differential analysis of metabolic phenotype between the B. amyloliquefaciens and P. nicotianae were conducted in this study. Results presented that the metabolic fingerprint of these two microorganisms were quite different. P. nicotianae and B.amyloliquefaciens metabolized 74% and 41% of the tested carbon substrates, 96% and 77% of the tested nitrogen substrates, 98% and 86% of the tested phosphorus substrates, 100% and 69% of the tested sulfur substrates,respectively. They had 94 and 91 different biosynthetic pathways, metabolized 72 and 95 different osmolyte, and could metabolize in 95 and 94 different pH environments, respectively. P. nicotianae showed stronger ability than B.amyloliquefaciens in the metabolism numbers of carbon, nitrogen, phosphorus and sulfur substrates, while poorer ability than B. amyloliquefaciens in osmolyte environments. The typical carbon that B. amyloliquefaciens efficiently utilized while not for P. nicotiana was D-glucosamine. They presented nearly equal metabolic abilities in both biosynthetic pathways and pH environments. They both had decarboxylase activities and deaminase activities.These results provided some valuable foundation for developing the bio-control agents of B. amyloliquefaciens against tobacco black shank.
引文
[1]Jacobi W R,Main C E,Powell N T.Influence of temperature and rainfall on the development of tobacco black shank[J].Phytopathology,1983,73(2):139-143.
    [2]Csinos A S,Fortnum B A,Powell N T,et al.Resistance of tobacco cultivars and candidate cultivars to Phytophthora parasitica var.nicotianae[J].Tobacco Science,1984,28:153-155.
    [3]Csinos A S,Minton N A.Control of tobacco black shank with combinations of systemic fungicides and nematicides or fumigants[J].Plant Disease,1983,67(2):204-207.
    [4]Shew H D,Lucas G B.Compendium of Tobacco Diseases[M].Saint Paul,Minnesota:American Phytopathological Society Press,1991,17-20.
    [5]Zhang X G,Sun W X,Guo L,et al.Genetic and pathogenic variation among tobacco black shank strains of Phytophthora parasitica var.nicotianae from the main tobacco growing in Chin[J].Journal of Phytopathology,2003,151(5):259-266.
    [6]Wang H C,Chen X J,Cai L T,et al.Race distribution and distribution of sensitivities to mefenoxam among isolates of Phytophthora parasitica var.nicotianae in Guizhou province of China[J].Crop Protection,2013,52:136-140.
    [7]Chen X H,Koumoutsi A,Scholz Romv,et al.More than anticipated-production of antibiotics and other secondary metabolities by Bacillus amyloliquefaciens FZB42[J].Journal of Molecular Microbiology and Biotechnology,2009,16:14-24.
    [8]Koumoutsi A,Chen X H,Vater J,et al.DegU and YczE positively regulate the synthesis of Bacillomycin D by Bacillus amyloliquefaciens strain FZB42[J].Applied and Environmental Microbiology,2007,73:6953-6964.
    [9]Bochner B R.New technologies to assess genotype-phenotype relationships[J].Nature Reviews Genetics,2003,4:309-314.
    [10]Bochner B R,Gadzinski P,Panomitros E.Phenotype microarrays for high-throughput phenotypic testing and assay of gene function[J].Genome Research,2001,11:1246-1255.
    [11]Wang H C,Huang Y F,Xia H Q,et al.Phenotypic analysis of Alternaria alternata,the causal agent of tobacco brown spot[J].Plant Pathology Journal,2015,14(2):79-85.
    [12]王茂胜,汪汉成,黄艳飞,等.烟草黑胫病菌的表型组学分析[J].微生物学报,2015,55(10):1356-1363.
    [13]Li W,Lu C D.Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa[J].Journal of Bacteriology,2007,189(15):5413-5420.
    [14]Wang H C,Huang Y F,Xia H Q,et al.Phenotypic analysis of Alternaria alternata,the causal agent of tobacco brown spot[J].Plant Pathology Journal,2015,14(2):79-85.
    [15]汪汉成,黄艳飞,龙明锦,等.烟草青枯病菌与其拮抗菌解淀粉芽胞杆菌的代谢表型差异分析[J].植物保护学报,2017,44(5):753-762.
    [16]Shahidi B G H,Barkhordar B,Pakgohar N,et al.Biological control of Phytophthora drechsleri tucker,the causal agent of pistachio gummosis,under greenhouse conditions by use of actinomycetes[J].Plant Pathology Journal,2006,5:20-23.
    [17]Oku S,Nishiyama S,Takao Y.Selective isolation of bacteria from soil with hydrophobic materials[J].World Journal of Microbiology and Biotechnology,2011,27:1941-1945.
    [18]Wang H C,Li W H,Chen Q Y,et al.A rapid microbioassay for discovery of antagonistic bacteria for Phytophthora parasitica var.nicotianae[J].Phytopathology,2012,102:267-271.
    [19]Sun H Y,Wang H C,Stammler G,et al.Baseline sensitivity of populations of Phytophthora capsici from China to three carboxylic acid amide(CAA)fungicides and sequence analysis of cholinephosphotranferases from a CAA-sensitive isolate and CAA-resistant laboratory mutants[J].Journal of Phytopathology,2010,158(4):244-252.
    [20]Mccorkle K,Lewis R,Shew D.Resistance to Phytophthora nicotianae in tobacco breeding lines derived from variety beinhart 1000[J].Plant Disease,2013,97(2):252-258.
    [21]Haesaert G,Vossen J H,Custers R,et al.Transformation of the potato variety Desiree with single or multiple resistance genes increases resistance to late blight under field conditions[J].Crop Protection,2015,77:163-175.
    [22]Wu K,Yuan S F,Xun G H,et al.Root exudates from two tobacco cultivars affect colonization of Ralstonia solanacearum and the disease index[J].European Journal of Plant Pathology,2015,141(4):667-677.
    [23]Mols M,de Been M,Zwietering M H,et al.Metabolic capacity of Bacillus strains ATCC 14579 and ATCC 10987 interlinked with comparatice genomics[J].Environmental Microbiology,2007,9(12):2933-2944.
    [24]Oh Y K,Palsson B O,Park S M,et al.Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data[J].The Journal of Biological Chemistry,2007,282:28791-28799.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700