剪切流中两个囊泡水动力学相互作用的数值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical investigation of the hydrodynamic interaction between two capsules in a shear flow
  • 作者:白帆 ; 孙仁
  • 英文作者:BAI Fan;SUN Ren;Department of engineering mechanics,Shanghai Jiao Tong University;
  • 关键词:囊泡 ; 水动力学相互作用 ; 格子波尔兹曼方法 ; 低雷诺数流动
  • 英文关键词:capsule;;hydrodynamic interaction;;lattice Boltzmann method;;low Reynolds number flow
  • 中文刊名:SDLJ
  • 英文刊名:Chinese Journal of Hydrodynamics
  • 机构:上海交通大学工程力学系;
  • 出版日期:2019-05-30
  • 出版单位:水动力学研究与进展(A辑)
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金项目(11672182);; 高等学校博士学科点专项科研基金项目(20130073110059)~~
  • 语种:中文;
  • 页:SDLJ201903005
  • 页数:9
  • CN:03
  • ISSN:31-1399/TK
  • 分类号:38-46
摘要
为了更好地理解囊泡的聚集现象,该文使用格子波尔兹曼-浸入式边界-有限元方法模拟了剪切流中两个囊泡的水动力学相互作用,着重关注过程中质心间的相对位置,膜之间的最短距离,接触面积和接触时间。(根据模拟结果,膜弹性的上升会导致膜之间最短距离增大,尽管他们质心会更加靠近。初始时刻在剪切和涡方向的质心距离的增大均会使接触面积减少,前者还会使接触时间减少。)当两个囊泡靠近壁面时,他们的接触程度会变大。当囊泡与壁面间距超过两倍初始半径时,壁面的影响可以忽略。
        To get a better understanding of capsule aggregation phenomena, a combined lattice Boltzmann-immersed boundary-finite element method is used to investigate the hydrodynamic interaction between two identical capsules in a shear flow, focusing on the relative distance between the mass centers, the minimum distance between the membranes, the contact area and contact time. Simulation results show that an increase in the elasticity of the membranes can induce a larger local separation when the capsules approach each other, although the relative distance between mass centers becomes smaller. Increases of initial relative mass center distances in the shear and vortical directions will decrease the contact area and the former will also reduce the contact time.When the capsules are near a wall, they exhibit greater contact. When the gap between the capsules and the wall is larger than twice the initial radius of the capsules, the effect of the wall can be ignored.
引文
[1]DONG C.Adhesion and signaling of tumor cells to leukocytes and endothelium in cancer metastasis[M].Cellular and Biomolecular Mechanics and Mechanobiology.Springer.2010.
    [2]HUANG P Y,HELLUMS J D.Aggregation and disaggregation kinetics of human blood platelets:Part I.Development and validation of a population balance method[J].Biophysical Journal,1993,65(1):334-343.
    [3]HUANG P Y,HELLUMS J D.Aggregation and disaggregation kinetics of human blood platelets:Part II.Shear-induced platelet aggregation[J].Biophysical Journal,1993,65(1):344-353.
    [4]NEELAMEGHAM S,TAYLOR A D,HELLUMS J D,et al.Modeling the reversible kinetics of neutrophil aggregation under hydrodynamic shear[J].Biophysical Journal,1997,72(4):1527-1540.
    [5]HAPPEL J,BRENNER H.Low Reynolds number hydrodynamics:with special applications to particulate media[M].Springer Science&Business Media,2012.
    [6]SUN R,HU W R.Planar thermocapillary migration of two bubbles in microgravity environment[J].Physics of Fluids,2003,15(10):3015-3027.
    [7]SUN R,CHWANG A T.Interactions between two touching spherical particles in sedimentation[J].Physical Review E,2007,76(4):046316.
    [8]SUN R,NG C O.Hydrodynamic interactions among multiple circular cylinders in an inviscid flow[J].Journal of Fluid Mechanics,2012,712:505-530.
    [9]BARTHES-BIESEL D,RALLISON J M.The time-dependent deformation of a capsule freely suspended in a linear shear flow[J].Journal of Fluid Mechanics,1981,113(11):251-267.
    [10]LAC E,MOREL A,BARTHES-BIESEL D.Hydrodynamic interaction between two identical capsules in simple shear flow[J].Journal of Fluid Mechanics,2007,573(7):149-169.
    [11]LAC E,BARTHES-BIESEL D.Pairwise interaction of capsules in simple shear flow:Three-dimensional effects[J].Physics of Fluids,2008,20(4):040801.
    [12]DODDI S K,BAGCHI P.Effect of inertia on the hydrodynamic interaction between two liquid capsules in simple shear flow[J].International Journal of Multiphase Flow,2008,34(4):375-392.
    [13]SINGH R K,SARKAR K.Hydrodynamic interactions between pairs of capsules and drops in a simple shear:Effects of viscosity ratio and heterogeneous collision[J].Physical Review E,2015,92(6):063029.
    [14]BAGCHI P,JOHNSON P C,POPEL A S.Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow[J].Journal of Biomechanical Engineering,2005,127(7):1070-1080.
    [15]JADHAV S,CHAN K Y,KONSTANTOPOULOS K,et al.Shear modulation of intercellular contact area between two deformable cells colliding under flow[J].Journal of Biomechanics,2007,40(13):2891-2897.
    [16]KRUGER T,VARNIK F,RAABE D.Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method[J].Computers&Mathematics with Applications,2011,61(12):3485-3505.
    [17]KRUGER T,KAOUI B,HARTING J.Interplay of inertia and deformability on rheological properties of a suspension of capsules[J].Journal of Fluid Mechanics,2014,751:725-745.
    [18]KRUGER T.Effect of tube diameter and capillary number on platelet margination and near-wall dynamics[J].Rheologica Acta,2016,55(6):511-526.
    [19]ZHANG J,JOHNSON P C,POPEL A S.Simulating microscopic hemodynamics and hemorheology with the immersed-boundary lattice-Boltzmann method[J].Computational Hydrodynamics of Capsules and Biological Cells CRC,Boca Raton,2010.
    [20]KRUGER T.Computer simulation study of collective phenomena in dense suspensions of red blood cells under shear[M].Wiesbaden:Vieweg+Teubner Verlag,2012.
    [21]KRUGER T,KUSUMAATMAJA H,KUZMIN A,et al.The lattice boltzmann method[M].Springer,2017.
    [22]RAMANUJAN S,POZRIKIDIS C.Deformation of liquid capsules enclosed by elastic membranes in simple shear flow:large deformations and the effect of fluid viscosities[J].Journal of Fluid Mechanics,1998,361:117-143.
    [23]LI X,SARKAR K.Front tracking simulation of deformation and buckling instability of a liquid capsule enclosed by an elastic membrane[J].Journal of Computational Physics,2008,227(10):4998-5018.
    [24]PAWAR P,JADHAV S,EGGLETON C D,et al.Roles of cell and microvillus deformation and receptor-ligand binding kinetics in cell rolling[J].American Journal of Physiology-Heart and Circulatory Physiology,2008,295(4):H1439-H1450.
    [25]SARKAR K,SINGH R K.Spatial ordering due to hydrodynamic interactions between a pair of colliding drops in a confined shear[J].Physics of Fluids,2013,25(5):051702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700