离子推进C/C栅极的设计与力学分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structural design and mechanical analysis of C/C grids for ion thruster
  • 作者:陈玥 ; 李凯 ; 彭雨晴 ; 李爱军 ; 张东升
  • 英文作者:CHEN Yue;LI Kai;PENG Yuqing;LI Aijun;ZHANG Dongsheng;Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University;College of Sciences, Shanghai University;Research Center of Composite Materials, Shanghai University;
  • 关键词:离子推进器 ; 栅极组件 ; C/C复合材料 ; 有限元分析
  • 英文关键词:ion thruster;;grids assembly;;C/C composite;;finite element analysis
  • 中文刊名:SDXZ
  • 英文刊名:Journal of Shanghai University(Natural Science Edition)
  • 机构:上海大学上海市应用数学和力学所研究所;上海大学理学院;上海大学复合材料研究中心;
  • 出版日期:2019-04-30
  • 出版单位:上海大学学报(自然科学版)
  • 年:2019
  • 期:v.25;No.146
  • 基金:国家重点研发计划重大科学仪器设备开发专项资助项目(2018YFF0104200);; 国家自然科学基金面上资助项目(11672347)
  • 语种:中文;
  • 页:SDXZ201902009
  • 页数:10
  • CN:02
  • ISSN:31-1718/N
  • 分类号:69-78
摘要
为了合理设计离子电推进器C/C复合材料栅极,并有效掌握栅极的横向刚度变化规律,以10 cm离子电推进系统为应用对象,设计了C/C复合材料栅极的编织结构.利用ABAQUS软件,分别建立加速栅和屏栅的有限元模型,引入周期性边界条件,将非均匀的复合材料栅极均质化,分析了栅极组件特征单元体受载下的应力分布规律,并预测了其宏观等效材料参数.讨论了材料组分性能对整体栅极横向刚度的影响,并与现有钼栅极的力学性能进行比较.结果表明,采用C/C栅极取代钼栅极的设计方法是可行的. C/C栅极的横向刚度取决于碳纤维的拉伸模量和基体的弹性模量,可选取更高拉伸模量的碳纤维提高栅极横向刚度.
        To design C/C grids for the ion thruster and estimate lateral stiffness of the C/C grids, the mechanical behavior of C/C composite grids is studied based on the geometry of molybdenum grids. Finite element models of acceleration and screen grids are established using ABAQUS. By introducing a periodic boundary condition, a homogeneous model is established to analyze the stress distribution and mechanical properties of the representative volume element. The effect of mechanical properties of the composite components on global lateral stiffness of the grids is then discussed, and compared with molybdenum grids. The results show that global lateral stiffness of C/C grids is a function of tensile modulus of the carbon fiber and the modulus of matrix. Higher tensile modulus of carbon fiber can be selected to improve lateral stiffness of C/C grids.
引文
[1]郑茂繁,江豪成,张天平,等.离子推进器C/C复合材料栅极研究[J].航天器环境工程,2010,27(6):756-759.
    [2]吴建军,张传胜.离子发动机关键技术分析[J].国防科技大学学报,2003,25(1):7-11.
    [3]李娟,顾佐,江豪成,等.离子火箭发动机补偿栅极设计[J].真空与低温,2005,11(1):29-33.
    [4]郭德洲,顾左,郑茂繁,等.离子推力器碳基材料栅极研究进展[J].真空与低温,2016,22(3):125-131.
    [5]Mueller J,Brophy J R,Brown D K,et al.Performance characteristics of 15 cm carboncarbon composite grids[C]//30th Joint Propulsion Conference and Exhibit.1994.
    [6]Mueller J,Brophy J R,Brown D K.Endurance testing and fabrication of advanced 15 cm and 30 cm carbon-carbon composite grids[C]//31st Joint Propulsion Conference and Exhibit.1995.
    [7]Mueller J,Brophy J R,Brown D K.Design,fabrication,and testing of 30 cm dia dished carbon-carbon ion engine grids[C]//32nd Joint Propulsion Conference and Exhibit.1996.
    [8]Rohit S,Daniel A,George C,et al.Status of NASA’s evolutionary xenon thruster(NEXT)long-duration test as of 50,000 h and 900 kg throughput[C]//33rd International Electric Propulsion Conference and Exhibit.2013.
    [9]成来飞,张立同,梅辉,等.化学气相渗透工艺制备陶瓷基复合材料[J].上海大学学报(自然科学版),2014,20(1):15-32.
    [10]冯志海,樊桢,孔清,等.高导热碳/碳复合材料的制备[J].上海大学学报(自然科学版),2014,20(1):51-58.
    [11]房金铭,许正辉,张中伟,等.碳布缝合预制体孔隙与热解碳沉积时变相依的多尺度研究[J].宇航材料工艺,2015(5):36-39.
    [12]严雪,许希武,张超.二维三轴编织复合材料的弹性性能分析[J].固体力学学报,2013,34(2):140-151.
    [13]Xia Z H,Zhang Y F,Ellyin F.A unified periodical boundary conditions for representative volume elements of composites and applications[J].International Journal of Solids&Structures,2003,40(8):1907-1921.
    [14]张超,许希武.二维二轴编织复合材料几何模型及弹性性能预测[J].复合材料学报,2010,27(5):129-135.
    [15]Byun J H.The analytical characterization of 2-D braided textile composites[J].Composites Science&Technology,2000,60(5):705-716.
    [16]杨敏,孙晋良,任慕苏,等.热解碳的纳米硬度及弹性模量[J].上海大学学报(自然科学版),2008,14(5):541-545.
    [17]Tsai K H,Hwan C L,Chen W L,et al.A parallelogram spring model for predicting the effective elastic properties of 2D braided composites[J].Composite Structures,2008,83(3):273-283.
    [18]沈观林,胡更开,刘彬,等.复合材料力学[M].北京:清华大学出版社,2006:205-221.
    [19]Aly-Hassan M S,Hatta H,Wakayama S,et al.Comparison of 2D and 3D carbon/carbon composites with respect to damage and fracture resistance[J].Carbon,2003,41(5):1069-1078.
    [20]Hatta H,Taniguchi K,Kogo Y.Compressive strength of three-dimensionally reinforced carbon/carbon composite[J].Carbon,2005,43(2):351-358.
    [21]Hatta H,Goto K,Ikegaki S.Tensile strength and fiber/matrix interfacial properties of 2D-and 3D-carbon/carbon composites[J].Journal of the European Ceramic Society,2005,25(4):535-542.
    [22]Zhang D,Arola D,Charalambides P G,et al.On the mechanical behavior of carbon-carbon optic grids determined using a bi-axial optical extensometer[J].Journal of Materials Science,2004,39(14):4495-4505.
    [23]潘叶金.钼、钨及其合金[J].中国钼业,2001,25(2):44-47.
    [24]Kitamura S,Hayakawa Y,Kasai Y,et al.Fabrication of carbon-carbon composite ion thruster grids improvement of structural strength[C]//25th International Electric Propulsion Conference.1997:586-593.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700