纳观尺度下不同晶向取向对裂纹萌生和扩展的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Effect of Different Crystal Orientations on Crack Initiation and Propagation at Nano Scale
  • 作者:卢昱江 ; 刘哲源 ; 李依轩 ; 黄宗吉 ; 高英俊
  • 英文作者:LU Yujiang;LIU Zheyuan;LI Yixuan;HUANG Zongji;GAO Yingjun;School of Physical Science and Technology,Guangxi University;
  • 关键词:微裂纹 ; 晶向取向 ; 裂纹萌生 ; 裂纹扩展 ; 晶体相场
  • 英文关键词:micro crack;;crystal orientation;;crack initiation;;crack propagation;;crystal phase field
  • 中文刊名:GXKX
  • 英文刊名:Journal of Guangxi Academy of Sciences
  • 机构:广西大学物理科学与工程技术学院;
  • 出版日期:2018-12-04 10:48
  • 出版单位:广西科学院学报
  • 年:2018
  • 期:v.34;No.122
  • 基金:国家自然科学基金项目(51161003);; 广西自然科学重点基金项目(2018GXNSFAA138150)资助
  • 语种:中文;
  • 页:GXKX201804007
  • 页数:6
  • CN:04
  • ISSN:45-1075/N
  • 分类号:53-58
摘要
【目的】了解裂纹的生长特征和扩展规律,揭示纳米级裂纹扩展机理及其对材料断裂的影响。【方法】采用晶体相场法研究不同初始晶向倾角在y方向单轴拉伸作用下裂纹扩展演化、对应的应力分布及其应力曲线。【结果】当拉应变作用达到临界值时,无预应变的样品裂口开裂方式不同。5°与20°晶向倾角的样品裂口直接开裂,并伴随着位错出现。10°与15°晶向倾角的样品裂口先发射位错,裂口准备开裂。裂纹形成后,5°与20°晶向倾角的样品裂纹主要呈脆性断裂模式扩展。10°与15°晶向倾角的样品为典型的韧性断裂模式扩展。【结论】不同晶向倾角对裂纹萌生时间、扩展方向以及韧-脆扩展形式有重要影响。
        【Objective】To understand the growth characteristics and expansion laws of cracks can help to reveal the mechanism of nano scale crack propagation and its effect on material fracture.【Methods】The crystal phase field(PFC)method is used to study the crack propagation evolution diagram,the corresponding stress distribution diagram and the stress curve diagram of different initial crystal tilt angles under uniaxial tension in the y direction.【Results】When the tensile strain reaches a critical value,the cracking mode of the sample without prestrain is different.The crack of the sample with a 5°and 20°crystal tilt angle directly cracks and is accompanied by dislocations.The crack of the sample with a 10°and 15°crystal tilt angle first emits dislocations,and the crack is ready to crack.After crack formation,the cracks of the sample with 5°and 20°crystal tilt angles mainly expand in the brittle fracture mode.The samples with 10°and 15°crystal orientation were typical ductile fracture mode.【Conclusion】Different crystal orientation angles have an important influence on crack initiation time,propagation direction and ductile-brittle expansion.
引文
[1]杨卫.宏观断裂力学[M].国防工业出版社,1995:290-301.YANG W.Macroscopic and microscopic fracture mechanics[M].National Defense Industry Press,1995:290-301.
    [2]邢永明,戴福隆,杨卫.准解理微裂纹裂尖纳观变形场的实验研究[J].中国科学:A辑,2000,30(8):49-54.XING Y M,DAI F L,YANG W.Experimental study on the deformation field of quasi-cleavage microcrack crack tip[J].Science in China:Series A,2000,30(8):49-54.
    [3]张跃,褚武扬,王燕斌,等.金属间化合物脆性微裂纹的TEM观察[J].中国科学:A辑,1994,24(5):551-560.ZHANG Y,CHU W Y,WANG Y B,et al.TEM observation of brittle microcracks of intermetallic compounds[J].Science in China:Series A,1994,24(5):551-560.
    [4]高克伟,陈奇志,褚武扬,等.纳米级解理微裂纹的形核与扩展[J].中国科学:A辑,1994,24(10):993.GAO K W,CHEN Q Z,CHU W Y,et al.Nucleation and extension of nanoscale cleavage microcracks[J].Science in China:Series A,1994,24(10):993.
    [5] ADELZADEH M,SHODJA H M,RAFII-TABAR H.Computational modeling of the interaction of two edge cracks,and two edge cracks interacting with a nanovoid,via an atomistic finite element method[J].Computational Materials Science,2008,42(2)186-193.
    [6] RAPAPORT D C.The art of molecular dynamics simulation[M].2nd ed.New York:Cambridge University Press,1995.
    [7] STEINBACH I.Phase-field model for microstructure evolution at the mesoscopic scale[J].Annual Review of Materials Research,2013,43(1):89-107.
    [8] CHEN L Q.Phase-field models for microstructure evolution[J].Annual Review of Materials Research,2002,16(32):113-140.
    [9]高英俊,卢昱江,孔令一,等.晶体相场模型及其在材料微结构演化的应用[J].金属学报,2018,54(2):278-292.GAO Y J,LU Y J,KONG L Y,et al.Phase field crystal model and its application for microstructure evolution of materials[J].Acta Metallurgica Sinica,2018,54(2):278-292.
    [10]高英俊,罗志荣,邓芊芊,等.韧性材料的微裂纹扩展与分叉的晶体相场模拟[J].计算物理,2014,31(4):471-478.GAO Y J,LUO Z R,DENG Q Q,et al.Phase-fieldcrystal modeling of microcrack propagation and branching in ductile materials[J].Chinese Journal of Computational Physics,2014,31(4):471-478.
    [11]高英俊,罗志荣,黄世叶,等.韧性材料的微裂纹扩展和连通的晶体相场模拟[J].中国有色金属学报,2013,23(7):1892-1899.GAO Y J,LUO Z R,HUANG S Y,et al.Phase-fieldcrystal modeling for microcrack propagation and connecting of ductile materials[J].The Chinese Journal of Nonferrous Metals,2013,23(7):1892-1899.
    [12] ELDER K R,KATAKOWSKI M,HAATAJA M,et al.Modeling elasticity in crystal growth[J].Physical Review Letters,2002,88(24):245701.
    [13] ELDER K R,GRANT M.Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals[J].Physical Review E,2004,70(5Pt1):051605.
    [14] SHI H,WEN X,ZHENG C,et al.Coupled motion of grain boundaries and the influence of microcracks:A phase-field-crystal study[J].Computational Materials Science,2017,132:125-131.
    [15] CROSS M,GREENSIDE H.Pattern formation and dynamic in nonequilibrium systems[M].Cambridge:Cambridge University Press,2009:1.
    [16] PROVATAS N,ELDER K.Phase-field methods in materials science and engineering[M].Weinheim:Wiley-VCH,2010:1.
    [17]高英俊,黄礼琳,周文全,等.高温应变下的亚晶界湮没与位错旋转机制的晶体相场模拟[J].中国科学:技术科学,2015,45(3):306-321.GAO Y J,HUANG L L,ZHOU W Q,et al.Phase field crystal simulation of subgrain boundary annihilation and dislocation rotation mechanism under strain at high temperature[J].Scientia Sinica:Technologica,2015,45(3):306-321.
    [18]卢昱江,孔令一,邓芊芊,等.微裂纹起裂扩展机理的晶体相场模拟[J].广西科学院学报,2017,33(4):240-245.LU Y J,KONG L Y,DENG Q Q,et al.Phase field crystal simulation of nucleation and propagation of micro-cracks[J].Journal of Guangxi Academy of Sciences,2017,33(4):240-245.
    [19]黄礼琳,叶里,胡绪志,等.不同晶向取向的裂纹扩展演化模拟[J].广西科学,2016,23(5):454-458,469.HUANG L L,YE L,HU X Z,et al.Simulation study of crack propagation and evolution in different crystal orientations[J].Guangxi Sciences,2016,23(5):454-458,469.
    [20]高英俊,卢成健,黄礼琳,等.晶界位错运动与位错反应过程的晶体相场模拟[J].金属学报,2014,50(1):110-120.GAO Y J,LU C J,HUANG L L,et al.Phase field crystal simulation of dislocation movement and reaction[J].Acta Metallurgica Sinica,2014,50(1):110-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700