激光冲击圆杆曲面诱导的残余应力数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of residual stresses induced by laser shock on the circumference surface of round rod
  • 作者:张兴权 ; 纪看看 ; 王会廷 ; 戚晓利 ; 陈彬 ; 童靳于 ; 方光武
  • 英文作者:Zhang Xingquan;Ji Kankan;Wang Huiting;Qi Xiaoli;Chen Bin;Tong Jinyu;Fang Guangwu;School of Mechanical Engineering, Anhui University of Technology;
  • 关键词:动态响应 ; 有限元分析 ; 曲面 ; 残余应力
  • 英文关键词:dynamic response;;finite element analysis;;curved surface;;residual stress
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:安徽工业大学机械工程学院;
  • 出版日期:2019-07-25
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.297
  • 基金:国家自然科学基金(51675002);; 安徽省自然科学基金(1708085ME110);; 安徽省重点研究与开发计划(201904a05020065);; 安徽省高校自然科学研究(KJ2019A0084)
  • 语种:中文;
  • 页:HWYJ201907013
  • 页数:9
  • CN:07
  • ISSN:12-1261/TN
  • 分类号:88-96
摘要
采用有限元分析方法对激光冲击2024铝合金圆杆圆周曲面诱导的动态应力波及其残余应力进行了数值模拟。首先,在ABAQUS/Explicit显式分析模块中模拟了峰值压力为2 GPa激光冲击波在φ16 mm杆中诱导的应力波的传播过程。随后,在ABAQUS/Standard隐式分析模块中进一步计算在圆杆曲面上诱导的残余应力。在此基础上,分析了圆杆直径的大小对应力波峰值衰减和残余应力分布的影响,并进行了相关的试验验证。研究结果表明,峰值压力为2GPa冲击波在φ16 mm的杆中诱导的弹塑性的应力波,应力波的峰值压力在400 ns时间内迅速衰减至250 MPa。冲击后,在距光斑中心小于0.5 mm冲击区域内分布不均匀残余应力,在光斑中心处形成了残余拉应力,轴向S11值为42 MPa;在半径为0.5~1.5 mm的冲击区域分布着残余压应力,S11值大约在250 MPa。应力波在传播过程中,其压力峰值衰减的速率随着杆径的增大而减慢,表面形成的残余压应力均随杆径的增大而增加。
        The finite element method was employed to simulate the dynamic stress waves and residual stresses induced by laser impacting the cylindrical surface of round rod made of 2024 aluminum alloy.During simulation, the code ABAQUS/Explicit was firstly utilized to simulate the process of the stress wave propagation in the rod with the diameter 16 mm, which was induced by the laser shock wave with peak value 2 GPa. Subsequently, the other code ABAQUS/Standard was used to calculate further the residual stresses distributed in the cylindrical surface of rod. Based on the simulation results, the effects of the rod diameter on the attenuation of the peak pressure of the stress wave and the residual stress distribution were investigated. Corresponding experiments were carried out to validate the calculated results as well. The results indicate that the peak pressure of the stress wave induced by the 2 GPa shock wave decreases rapidly to 250 MPa within 400 ns in the round rod with diameter 16 mm. After laser shocking, an uneven residual stresses are distributed in central region of the impacted surface, and tensile residual stresses are formed at the center, where the value of residual stresses S11 reaches 42 MPa. While compressive residual stresses are formed in other impacted areas(radius from 0.5 mm to 1.5 mm), where the compressive residual stresses S11 are roughly 250 MPa. During the propagation of the stress wave, the decay rate of its peak pressure decreases with the enlarging rod diameter, and the compressive residual stresses distributed on the cylindrical surface increase with the increasing rod diameter.
引文
[1]Zhang Xingquan,Chen Liusan,Li Shengzhi,et al.Investigation of the fatigue life of pre-and post-drilling hole in dog-bone specimen subjected to laser shot peening[J].Materials and Design,2015,88:106-114.
    [2]Shen Xiaojun,Wang Cheng,An Zhibin,et al.Effects of oblique laser shock processing on rotary bending fatigue of aero-engine fan shaft[J].Infrared and Laser Engineering,2015,44(12):3548-3553.(in Chinese)沈晓骏,汪诚,安志斌,等.斜激光冲击对航空发动机风扇轴弯曲疲劳性能的影响[J].红外与激光工程,2015,44(12):3548-3553.
    [3]Zhang Xingquan,Li Huan,Duan Shiwei,et al.Modeling of residual stress field induced in Ti-6Al-4V alloy plate by two sided laser shock processing[J].Surface and Coatings Technology,2015,280:163-173.
    [4]Zhang X Q,Li H,Yu X L,et al.Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate[J].Materials and Design,2015,65:425-431.
    [5]Zhou Jianzhong,Wei Denghui,Huang Shu,et al.Microscale laser shock peening on TiN coatings[J].Optics and Precision Engineering,2011,19(11):2679-2684.(in Chinese)周建忠,卫登辉,黄舒,等.微尺度激光喷丸强化TiN涂层的表面性能[J].光学精密工程,2011,19(11):2679-2684.
    [6]Xue Jun,Feng Jiantao,Ma Changzhen,et al.Influence of laser shock peening on microstructure and oxidation resistance of laser additive manufactured TC4 titanium alloy[J].Chinese Optics,2018,11(2):198-205.(in Chinese)薛军,冯建涛,马长征,等.激光冲击强化对激光增材TC4钛合金组织和抗氧化性的影响[J].中国光学,2018,11(2):198-205.
    [7]Zhang Xingquan,Chen Liusan,Yu Xiaoliu,et al.Effect of laser shock processing on fatigue life of fastener hole[J].Transactions of Nonferrous Metals Society of China,2014,24(4):969-974.
    [8]Zhang Xingquan,Zhang Yan,Duan Shiwei,et al.Numerical simulation of dynamic response of round rod subjected to laser shocking[J].Chinese Journal of Lasers,2015,42(9):0903009.(in Chinese)张兴权,章艳,段士伟,等.圆杆在激光冲击作用下动态响应的数值模拟[J].中国激光,2015,42(9):0903009.
    [9]Huang Zhiwei,Zhang Xingquan,Zhang Yan,et al.Effect of boundary constraint conditions of thin plate on residual stresses and plastic deformation induced by laser shock peening[J].Infrared and Laser Engineering,2017,46(8):0806009.(in Chinese)黄志伟,张兴权,章艳,等.边界约束条件对薄板激光喷丸诱导残余应力和塑性变形的影响[J].红外与激光工程,2017,46(8):0806009.
    [10]Fabbro R,Fournier J,Ballard P,et al.Physical study of laser-produced plasma in confined geometry[J].Journal of Applied Physics,1990,68(2):775-784.
    [11]Zhang Wenwu,Yao Y Lawrence.Micro scale laser shock processing of metallic components[J].Journal of Manufacturing Science and Engineering,2002,124(2):369-378.
    [12]Gao Huang,Ye Chang,Cheng Gary J.Deformation behaviors and critical parameters in microscale laser dynamic forming[J].Journal of Manufacturing Science and Engineering,2009,131(5):051011.
    [13]Graham Hammersley,Lloyd A Hackel,Fritz Harris.Surface prestressing to improve fatigue strength of components by laser shot peening[J].Optics and Lasers in Engineering,2000,34:327-337.
    [14]Johnson Gordon R,Cook William H.Fracture characteristics of three metals subjected to various strains,strain rates,temperatures and pressures[J].Engineering Fracture Mechanics,1985,21(1):31-48.
    [15]Ocana J L,Correa C,García-Beltrán A,et al.Laser shock processing of thin Al2024-T351 plates for induction of through-thickness compressive residual stresses fields[J].Journal of Materials Processing Technology,2015,223:8-15.
    [16]Peyre P,Fabbro R,Merrien P,et al.Laser shock processing of aluminum alloys:Application to high cycle fatigue behavior[J].Materials Science and Engineering A,1996,210(1/20):102-113.
    [17]Qiao Hongchao,Zhao Yixiang,Zhao Jibin,et al.Effect of laser peening on microstructures and properties of TiAl alloy[J].Optics and Precision Engineering,2014,22(7):1766-1773.(in Chinese)乔红超,赵亦翔,赵吉宾,等.激光冲击强化对TiAl合金组织和性能的影响[J].光学精密工程,2014,22(7):1766-1773.
    [18]Chen Ruifang,Guo Naiguo,Hua Yinqun.Numerical simulation of effects of laser shock parameters on residual stress field induced by laser shock processing[J].Chinese Journal of Lasers,2008,35(6):931-936.(in Chinese)陈瑞芳,郭乃国,花银群.激光冲击参数对残余应力场影响的三维数值模拟[J].中国激光,2008,35(6):931-936.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700