伽马射线辐照制备还原氧化石墨烯
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of reduced graphene oxide via gamma-ray irradiation
  • 作者:李吉豪 ; 黄泽茹 ; 黄卫兵
  • 英文作者:LI Jihao;HUANG Zeru;HUANG Weibing;Shanghai Institute of Applied Physics, Chinese Academy of Sciences;High School Affiliated to Shanghai Jiao Tong University;
  • 关键词:氧化石墨烯 ; 还原氧化石墨烯 ; γ射线 ; 乙二胺
  • 英文关键词:Reduced graphene oxide;;Graphene oxide;;Gamma-ray;;Ethylenediamine
  • 中文刊名:FYFG
  • 英文刊名:Journal of Radiation Research and Radiation Processing
  • 机构:中国科学院上海应用物理研究所;上海交通大学附属中学;
  • 出版日期:2018-02-20
  • 出版单位:辐射研究与辐射工艺学报
  • 年:2018
  • 期:v.36
  • 基金:国家自然科学基金(11505270)资助~~
  • 语种:中文;
  • 页:FYFG201801005
  • 页数:6
  • CN:01
  • ISSN:31-1258/TL
  • 分类号:33-38
摘要
在氮气气氛中,以乙二胺(EDA)作为自由基捕获剂,利用γ射线辐照技术在水体系中将氧化石墨烯(GO)辐照还原功能化,制备高分散性的氨基功能化还原氧化石墨烯(rGO)。考察吸收剂量(5.3、15、20、35.3 kGy)对rGO还原程度和功能化程度的影响,并通过傅里叶变换红外光谱(FT-IR)、紫外-可见光吸收光谱(UV-vis)、X射线光电子能谱(XPS)、X射线衍射(XRD)和热重分析(TGA)等方法分析GO的化学结构及还原程度。直观上看,辐照后,GO溶液逐渐呈现棕黑色,随着吸收剂量的增加,溶液颜色加深,且具有良好分散性。FT-IR谱显示,经过γ射线辐照后,初始GO上的羰基被还原去除,EDA小分子被连接到了rGO片层上。UV-vis、XPS、TGA及XRD谱图表明,随着吸收剂量的增大可以使氧化石墨烯还原程度提高,当吸收剂量35.3 kGy时,C/O可达7.21。EDA有机小分子与氧化性的·OH反应,在无氧条件下转化为还原性的自由基,参与到与GO之间的氧化还原反应中,并被接枝到GO层的表面。
        We report here a rapid and cost-effective approach for reduction and functionalization of graphene oxide(GO) using ethylenediamine(EDA) in water medium by gamma-ray irradiation in a nitrogen atmosphere. The reduction degree, which can be controlled by varying the absorbed doses(5.3, 15, 20, and 35.3 kGy), was investigated in detail by ultra-violet visible(UV-vis) spectroscopy, Fourier transform infrared spectroscopy(FT-IR), X-ray diffract meter(XRD), X-ray photoelectron spectroscopy(XPS), and thermogravimetric analysis(TGA). It was found that the GO dispersion changed from yellow to black with increasing absorbed doses. The results of FT-IR, UV-vis, TGA, and XPS demonstrated that the reduction degree increased with absorbed dose and modification of GO with N-H from EDA molecules occurred. The rGO dispersion in water was stable without precipitate. The ratio of C/O reached 7.21 in rGO-at 35.3 kGy. In addition, a reduction mechanism for determining interactions among the EDA molecules, active radicals from the radiolysis of water, oxygen-containing groups on GO sheets, and some EDA molecules attached onto the rGO sheet because of the recombination of radicals is proposed.
引文
1 Rao C N R,Sood A K,Subrahmanyam K S,et al,Graphene:the new two-dimensional nanomaterial[J].Angewandte Chemie International Edition,2009,48(42):7752-7777.DOI:10.1002/anie.200901678.
    2 Shen J,Hu Y,Shi M,et al,Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets[J].Chemistry of Materials,2009,21(15):3514-3520.DOI:10.1021/cm901247t.
    3 Hummers W S,Offeman R E.Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80:1339.DOI:10.1021/ja01539a017.
    4 Park S,Ruoff R S.Chemical methods for the production of graphenes[J].Nature Nanotech,2009,4:217-224.DOI:10.1038/nnano.2009.58.
    5 Shin H J,Kim K K,Benayad A,et al.Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J].Advanced Functional Materials,2009,19(12):1987-1992.DOI:10.1002/adfm.200900167.
    6 Wang H,Robinson J T,Li X,et al.Solvothermal reduction of chemically exfoliated graphene sheets[J].Journal of the American Chemical Society,2009,131(29):9910-9911.DOI:10.1021/ja904251p.
    7 Zhang B,Li L,Wang Z,et al.Radiation induced reduction:an effective and clean route to synthesize functionalized graphene[J].Journal of Materials Chemistry,2012,22(16):7775-7781.DOI:10.1039/C2JM16722K.
    8 Kumar P,Das B,Chitara B,et al.Novel radiation-induced properties of graphene and related materials[J].Macromolecular Chemistry and Physics,2012,213(10-11):1146-1163.DOI:10.1002/macp.201100451.
    9 Liu H,Miao W,Yang S,et al.Controlled synthesis of different shapes of Cu2O via?-irradiation[J].Crystal Growth&Design,2009,9(4):1733-1740.DOI:10.1021/cg800703n.
    10 Zhang Y,Ma H L,Zhang Q,et al.Facile synthesis of well-dispersed graphene by?-ray induced reduction of graphene oxide[J].Journal of Materials Chemistry,2012,22(26):13064-13069.DOI:10.1039/C2JM32231E.
    11 Li J,Zhang B,Li L,et al.?-ray irradiation effects on graphene oxide in an ethylenediamine aqueous solution[J].Radiation Physics and Chemistry,2014,94:80-83.DOI:10.1016/j.radphyschem.2013.06.029.
    12 He Y,Li J,Luo K,et al.Engineering reduced graphene oxide aerogel produced by effectiveγ-ray radiation-induced self-assembly and its application for continuous oil-water separation[J].Industrial&Engineering Chemistry Research,2016,55(13):3775-3781.DOI:10.1021/acs.iecr.6b00073
    13 He Y L,Li J H,Li L F,et al.The synergy reduction and self-assembly of graphene oxide via gamma-ray irradiation in an ethanediamine aqueous solution[J].Nuclear Science and Techniques,2016,27(3):61.DOIhttps://doi.org/10.1007/s41365-016-0068-8
    14张伯武,俞初红,沈蓉芳,等.伽马射线辐照技术制备石墨烯基功能材料的研究进展[J].辐射研究与辐射工艺学报,2017,35(2):020101.DOI:10.11889/j.1000-3436.2017.rrj.35.020101.ZHANG Bowu,YU Chuhong,SHEN Rongfang,et al.Progress in research on preparation of graphene-based functional materials using gamma-ray irradiation technology[J].Journal of Radiation Research and Radiation Processing,2017,35(2):020101.DOI:10.11889/j.1000-3436.2017.rrj.35.020101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700