基于遗传算法的飞机复合材料结构装配压紧力大小与布局的优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of size and layout of pressing force for composite airframe structure assembly based on genetic algorithm
  • 作者:张秋月 ; 安鲁陵 ; 岳烜德 ; 李志辉 ; 国佳
  • 英文作者:ZHANG Qiuyue;AN Luling;YUE Xuande;LI Zhihui;GUO Jia;Nanjing University of Aeronautics and Astronautics,Jiangsu Key Laboratory of Precision and Micro-manufacturing Technology;Hafei Aviation Industry Co.Ltd;
  • 关键词:飞机装配 ; 复合材料结构 ; 装配压紧力 ; 力控制技术 ; 遗传算法
  • 英文关键词:aircraft assembly;;composites structure;;assembly pressing force;;force control;;genetic algorithms
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:南京航空航天大学江苏省精密与微细制造技术重点实验室;哈尔滨飞机工业集团有限责任公司;
  • 出版日期:2018-08-19 21:48
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:江苏省精密与微细制造技术重点实验室基本科研业务重点项目(ZAA1400105)
  • 语种:中文;
  • 页:FUHE201906022
  • 页数:12
  • CN:06
  • ISSN:11-1801/TB
  • 分类号:210-221
摘要
针对飞机复合材料结构装配时出现间隙的问题,考虑用压紧力消除间隙可能引起层合板产生损伤,提出了基于遗传算法的压紧力大小和布局的优化算法。结合有限元分析方法,考虑压紧机构之间的干涉问题,以复合材料分层损伤为约束条件,以间隙消除率为优化目标,建立了压紧力大小和布局的优化模型。以复合材料翼盒为例,建立基于内聚力单元的有限元模型,使用上述方法优化复合材料壁板上的压紧力大小和布局。将优化后得到的压紧力方案在有限元模型上进行验算,计算间隙消除率并分析应力应变状态和分层损伤情况。结果表明,优化后的方案能够在不使壁板产生分层损伤的前提下提高间隙消除率,并且能够使壁板的应力和应变分布趋于均匀。当装配间隙的初始值为0.2~0.8mm时,优化后的方案使间隙消除率提高至77.4%~100%,比优化前的方案提高了19.2%~177.8%。
        For the assembly gap in composite airframe structure,an optimization method based on genetic algorithm was proposed to optimize the size and layout of pressing force,in which damage caused by pressing force was considered.Combining with finite element analysis,considering the interference between pressing points,with laminates delamination as the constraint condition and elimination rate of gap as the objective function,the optimization model with size and layout of pressing force was established.Taking composite win box as an example,establishing finite element model based on cohesive element,the optimization method was applied to optimize pressing force on composite panel.Then,with the optimum size and layout of pressing force,the elimination rate of gap,delamination damage,stress and strain were calculated and analyzed.The results demonstrate that:the optimum pressing force makes stress and strain distribution more uniform;elimination rate of gap is improved dramatically compared with the traditional one without laminates delamination.When the initial assembly gap is 0.2-0.8 mm,the elimination rate of gap is increased to 77.4%-100%,which is 19.2%-177.8% higher than that before the optimization.
引文
[1]ZHANG X,CHEN Y,HU J.Recent advances in the development of aerospace materials[J].Progress in Aerospace Sciences,2018,97:22-34.
    [2]杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12.DU S Y.Advanced composite materials and aerospace engineering[J].Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese).
    [3]马立敏,张嘉振,岳广全,等.复合材料在新一代大型民用飞机中的应用[J].复合材料学报,2015,32(2):317-322.MA L M,ZHANG J Z,YUE G Q,et al.Application of composites in new generation of large civil aircraft[J].Acta Materiae Compositae Sinica,2015,32(2):317-322(in Chinese).
    [4]EDWARDS M R.Materials for military helicopters[J].Proceedings of the Institution of Mechanical Engineers Part G:Journal of Aerospace Engineering,2002,216(2):77-88.
    [5]PIMENTA S,PINHO S T.Recycling carbon fibre reinforced polymers for structural applications:Technology review and market outlook[J].Waste Management,2011,31(2):378-392.
    [6]KELLY A.Very stiff fibres woven into engineering’s future:A long-term perspective[J].Journal of Materials Science,2008,43(20):6578-6585.
    [7]拉卡德B H.复合材料及结构的缺陷和损伤[M].张晓军等译.北京:国防工业出版社,2017:3-16.Rikard Benton Heslehurs.Defects and damage in composite materials and structure[M].Translated by ZHANG X J,et al.Beijing:National Defend Industry Press,2017:3-16(in Chinese).
    [8]李东升,翟雨农,李小强.飞机复合材料结构少无应力装配方法研究与应用进展[J].航空制造技术,2017,528(9):30-34.LI D S,ZHAI Y N,LI X Q.Research and application advances of stress-less assembly methods for composite airframe[J].Aeronautical Manufacturing Technology,2017,528(9):30-34(in Chinese).
    [9]RAMIREZ J,WOLLNACK J.Flexible automated assembly systems for large CFRP-structures[J].Procedia Technology,2014,15:447-455.
    [10]ZHANG W,AN L,JIANG Q,et al.Interference detection algorithm of aircraft components assembly based on measured data[C]//National Conference on Electrical,Electronics and Computer Engineering,2015:891-898.
    [11]蒋麒麟,安鲁陵,云一珅,等.间隙补偿对单螺栓连接层合板轴向刚度的影响研究[J].玻璃钢/复合材料,2016(11):59-64.JIANG Q L,AN L L,YUN Y S,et al.Effect of gap compensation on axial stiffness in single bolt fastening com-posite laminates[J].Fiber Reinforced Plastics/Composites,2016(11):59-64(in Chinese).
    [12]云一珅.填隙补偿参数对复合材料螺栓连接结构的力学性能的影响研究[D].南京:南京航空航天大学,2017.YUN Y S.Research on the effect of gap-filling parameters on mechanical behavior of the bolt connected composite structure[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2017(in Chinese).
    [13]岳烜德,安鲁陵,云一珅,等.液体垫片对复合材料单搭接螺栓接头力学性能的影响[J].复合材料学报,2018,35(1):50-60.YUE X D,AN L L,YUN Y S,et al.Influences of the liquid shim on the mechanical properties of single-lap composite bolted joint[J].Acta Materiae Compositae Sinica,2018,35(1):50-60(in Chinese).
    [14]JONSSON M,MURRAY T,ROBERTSSON A,et al.Force feedback for assembly of aircraft structures[J].Sae Technical Papers,2010,1827(1):1-9.
    [15]JONSSON M.On Manufacturing technology as an enabler of fexibility:Affordable reconfigurable tooling and force-controlled robotics[D].Sweden:Link9ping University,2013.
    [16]王亮.飞机数字化装配柔性工装技术及系统研究[D].北京:北京航空航天大学,2010.WANG L.Flexible tooling technology system for aircraft digital assembly[D].Beijing:Beihang University,2010(in Chinese).
    [17]WU F,LI D,DU B.Optimal assembly of a skin panel onto the fuselage framework based on force control technology[J].ARCHIVE Proceedings of the Institution of Mechanical Engineers Part E:Journal of Process Mechanical Engineering,2015,230(6):1-5.
    [18]SDERBERG R,WRMEFJORD K,LINDKVIST L.Variation simulation of stress during assembly of composite parts[J].CIRP Annals-Manufacturing Technology,2015,64(1):17-20.
    [19]CORRADO A,POLINI W.Assembly design in aeronautic field:From assembly jigs to tolerance analysis[J].Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture,2017,231(14):2652-2663.
    [20]岳烜德,安鲁陵,云一珅,等.液体垫片对复合材料装配结构应力和应变的影响[J].复合材料学报,2018,35(10):71-83.YUE X D,AN L L,YUN Y S,et al.Effect of liquid shim on strain and stress of composite assembly structure[J].Acta Materiae Compositae Sinica,2018,35(10):71-83(in Chinese).
    [21]李莉.机械零件疲劳强度若干问题的研究[D].沈阳:东北大学,2009.LI L.Research on fatigue strength of mechanical components[D].Shenyang:Northeastern University,2009(in Chinese).
    [22]习年生,于志成,陶春虎.纤维增强复合材料的损伤特征及失效分析方法[J].航空材料学报,2000,20(2):55-63.XI N S,YU Z C,TAO C H.Damage characterization and failure analysis in fiber reinforced composites[J].Journal of Aeronautical Materials,2000,20(2):55-63(in Chinese).
    [23]JAMIE S.Concept development of an automated shim cell for F-35forward fuselage outer mold line control[D].Menomonie:University of Wisconsin at Stout,2011.
    [24]张桂书.飞机复合材料构件装配间隙补偿研究[D].南京:南京航空航天大学,2015.ZHANG G S.Research on assembly gap compensation for aircraft composite components[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2015(in Chinese).
    [25]韩学群.复合材料层合板分层损伤数值模拟[D].武汉:武汉理工大学,2010.HAN X Q.Numerical simulation of delamination damage for composite laminates[D].Wuhan:Wuhan University of Technology,2010(in Chinese).
    [26]谭建设,张晓晶,张俊琪,汪海.复合材料层合板低速冲击的接触力和能量响应仿真[J].复合材料学报,2014,31(4):970-980.TAN J S,ZHANG X J,ZHANG J Q,et al.Simulation of impact force and energy response of composite laminate subjected to low velocity impact[J].Acta Materiae Compositae Sinica,2014,31(4):970-980.
    [27]TURON A,CAMANHO P P,COSTA J,et al.An interface damage model for the simulation of delamination under variable-mode ratio in composite materials[J].Recercat Home,2004.
    [28]TURON A,CAMANHO P P,COSTA J,et al.Accurate simulation of delamination growth under mixed-mode loading using cohesive elements:Definition of interlaminar strengths and elastic stiffness[J].Composite Structures,2010,92(8):1857-1864.
    [29]曾刚,程文明,曾鸣.基于遗传算法的机械零部件可靠性优化设计[J].机械设计与制造,2012(10):1-3.ZENG G,CHENG W M,ZENG M.Reliability-optimization design of the mechanical units based on genetic algorithm[J].Machinery Design&Manufacture,2012(10):1-3(in Chinese).
    [30]郭惠昕,张龙庭.混合离散变量优化设计的复合遗传算法[J].机械设计,2005(03):9-11.GUO H X,ZHANG L T.Compound genetic algorithm on optimization design of hybrid discrete variables[J].Journal of Machine Design,2005(03):9-11(in Chinese).
    [31]CAMPONESCHI E T,BOHLMANN R E,FOGARTY J H.Composite to metal joints for the ARPA man-rated demonstration article[J].Journal of Thermoplastic Composite Materials,1995,8(1):56-79.
    [32]蒋麒麟,安鲁陵,云一珅,等.间隙补偿及液体垫片参数对层合板单层与层间应力的影响[J].机械科学与技术,2017,36(10):1633-1640.JIANG Q L,AN L L,YUN Y S,et al.Effect of gap compensation and parameters of liquid shim on composite laminates internal stress and interlaminar stress[J].Mechanical Science and Technology for Aerospace Engineering,2017,36(10):1633-1640(in Chinese).
    [33]IRISARRI F X,LAURIN F,CARRERE N,et al.Progressive damage and failure of mechanically fastened joints in CFRP laminates:Part I-Refined finite element modelling of single-fastener joints[J].Composite Structures,2012,94(8):2269-2277.
    [34]刘怡冰.复合材料翼盒制造工艺研究与实现[D].南京:南京航空航天大学,2015.LIU Y B.Research and implement of the composite wing box manufacturing process[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2015(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700