丛枝菌根真菌提高林木抗逆性机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Advances in Forest Trees Stress Resistance Improvement Mechanisms by Arbuscular Mycorrhizal Fungi
  • 作者:胡华英 ; 曹升 ; 张虹 ; 周垂帆 ; 何宗明 ; 马祥庆
  • 英文作者:Hu Huaying;Cao Sheng;Zhang Hong;Zhou Chuifan;He Zongming;Ma Xiangqing;College of Forestry, Fujian Agriculture and Forestry University;Fujian Engineering Research Center of Germplasm Innovation in Chinese Fir;
  • 关键词:丛枝菌根真菌 ; 林木抗逆性 ; 磷胁迫
  • 英文关键词:arbuscular mycorrhiza fungi;;forest tree stress resistance;;phosphorus stress
  • 中文刊名:SJLY
  • 英文刊名:World Forestry Research
  • 机构:福建农林大学林学院;福建省杉木种质创新工程研究中心;
  • 出版日期:2018-09-19 09:37
  • 出版单位:世界林业研究
  • 年:2019
  • 期:v.32
  • 基金:国家重点研发计划“杉木高效培育技术研究”(2016YFD0600301);; 福建农林大学科技创新专项基金“磷高效杉木优良种质资源收集、快繁及高效培育”(CXZX2017112)
  • 语种:中文;
  • 页:SJLY201902005
  • 页数:5
  • CN:02
  • ISSN:11-2080/S
  • 分类号:27-31
摘要
丛枝菌根(AM)真菌是存在于土壤中的重要真菌之一,它能够与宿主林木根系产生互利共生体,从而对林木的生长发育有着多种促进作用。文中综述了近10年来国内外关于AM真菌对林木影响的研究进展,包括AM真菌对林木的抗旱性、抗病性、抗盐性、耐热性、耐虫性及对有害重金属抗性的影响等,通过促进林木光合作用、营养吸收、新陈代谢等来增加林木生长量、生物量的积累,从而提高林木的抗逆性;对在AM真菌研究中存在的难题进行了分析,并对其在林木中的应用研究进行了展望,旨在为林木抗逆性机制研究、森林经营等提供科学参考。
        Arbuscular mycorrhizal(AM) fungus is one of the most important fungi found in soil.It can help create mutually beneficial symbioses with the root system of the host tree, and thus has a range of promoting effects on the growth of forest trees.This paper reviews the domestic and international research progress on the effects of AM fungi on forest trees in recent 10 years, including their effects on drought resistance, disease resistance, salt resistance, heat resistance, insect resistance and resistance to harmful heavy metals.AM fungi can increase the growth and biomass accumulation of forest trees by promoting photosynthesis, nutrient absorption and metabolism, so as to improve the mechanism of stress resistance of trees.The paper analyzes the problems existing in the research of AM fungi, and prospects application of AM fungi to forest trees.This study is expected to provide scientific references for the research on the resistance mechanism of trees and forest management.
引文
[1]南雪芹. 不同AMF对茶树生长及耐盐性的影响研究[D]. 陕西杨凌: 西北农林科技大学, 2016.
    [2]HODGE A, FITTER A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13754-13759.
    [3]陈伟玉, 麦志通, 蔡开朗, 等. 不同丛枝菌根菌株对3种珍贵树种促生效应试验[J]. 广东农业科学, 2017(11): 13-19.
    [4]封晔, 陈建林. 丛枝菌根真菌AMF对猕猴桃根际土壤酶活性的影响[J]. 农业与技术, 2017(24): 16-16.
    [5]GHOLAMHOSEINI M, GHALAVAND A, DOLATABADIAN A, et al. Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress[J]. Agricultural Water Management, 2013, 117: 106-114.
    [6]许平辉, 王飞权, 齐玉岗, 等. 丛枝菌根真菌对茶树抗旱性的影响[J]. 西北农业学报, 2017, 26(7): 1033-1040.
    [7]WU Q S, XIA R X. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions[J]. Journal of Plant Physiology, 2006, 163(4): 417-25.
    [8]何斐. 黄土高原丛枝菌根真菌(AMF)提高刺槐抗旱性机制[D]. 陕西杨凌: 西北农林科技大学, 2016.
    [9]马坤, 杨建军,李璐,等. 接种丛枝菌根真菌后干旱胁迫对木棉根区土壤和体内养分的影响[J]. 中南林业科技大学学报, 2017, 37(11): 90-95, 102.
    [10]KOSKE R E. Distribution of VA mycorrhizal fungi along a latitudinal temperature gradient[J]. Mycologia, 1987, 79(1): 55-68.
    [11]韦洁敏. 丛枝菌根真菌对梨苗生长及抗旱耐热性的影响研究[D]. 重庆: 西南大学, 2012.
    [12]BORGES R G, CHANEY W R. Root temperature affects mycorrhizal efficacy in Fraxinus pennsylvanica Marsh[J]. New Phytologist, 1989, 112(3):411-417.
    [13]杨环宇. 丛枝菌根真菌对连作土壤中桃实生苗生长的影响[D]. 武汉: 华中农业大学, 2014.
    [14]汤静. 接种丛枝菌根对柑桔锌素吸收效应的影响研究[D]. 重庆: 西南大学, 2010.
    [15]于振兴. 土壤盐胁迫下植物之间的相互作用及根系和丛枝菌根的影响[D]. 杭州: 浙江大学, 2015.
    [16]湛蔚, 刘洪光, 唐明. 菌根真菌提高杨树抗溃疡病生理生化机制的研究[J]. 西北植物学报, 2010, 30(12): 2437-2443.
    [17]BISSONNETTE L, ST-ARNAUD M, LABRECQUE M. Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial[J]. Plant and Soil, 2010, 332(1/2): 55-67.
    [18]BEDINI S, TURRINI A, RIGO C, et al. Molecular characterization and glomalin production of arbuscular mycorrhizal fungi colonizing a heavy metal polluted ash disposal island, downtown Venice[J]. Soil Biology & Biochemistry, 2010, 42(5): 758-765.
    [19]徐丽娇, 姜雪莲, 郝志鹏, 等. 丛枝菌根通过调节碳磷代谢相关基因的表达增强植物对低磷胁迫的适应性[J]. 植物生态学报, 2017, 41(8): 815-825.
    [20]邹慧, 曾杰. 菌根对林木生理代谢影响研究进展[J]. 世界林业研究, 2018, 31(2): 19-24.
    [21]XU J, LIU S, SONG S, et al. Arbuscular mycorrhizal fungi influence decomposition and the associated soil microbial community under different soil phosphorus availability[J]. Soil Biology & Biochemistry, 2018, 120: 181-190.
    [22]闫明, 钟章成. 铝胁迫对感染丛枝菌根真菌的樟树幼苗生长的影响[J]. 林业科学, 2007, 43(4): 59-65.
    [23]杨应, 蒋长洪, 何跃军, 等. 丛枝菌根网对喀斯特适生植物氮、磷化学计量特征的影响[J]. 植物生理学报, 2017(12):2078-2090.
    [24]孙吉庆, 刘润进, 李敏. 丛枝菌根真菌提高植物抗逆性的效应及其机制研究进展[J]. 植物生理学报, 2012, 48(9):845-852.
    [25]ZHAO M, LI M, LIU R J. Effects of arbuscular mycorrhizae on microbial population and enzyme activity in replant soil used for watermelon production[J].International Journal of Engineering,Science and Technology,2010, 2(7): 17-22.
    [26]范克胜, 吴小芹, 任嘉红, 等. 盐胁迫下外生菌根真菌与根际有益细菌互作对杨树光合特性的影响[J]. 西北植物学报, 2011, 31(6): 1216-1222.
    [27]ZHANG H, LIU Z, CHEN H, et al. Symbiosis of arbuscular mycorrhizal fungi and Robinia pseudoacacia L. improves root tensile strength and soil aggregate stability[J]. Plos One, 2016, 11(4): e0153378. DOI: 10.1371/journal.pone.0153378.
    [28]侯时季. 干旱胁迫下丛枝菌根共生体系离子转运蛋白基因表达调控机制研究[D]. 北京:中国科学院大学, 2016.
    [29]舒波. 丛枝菌根真菌促进枳(Poncirus trifoliata L. Raf)磷吸收效应及其机理研究[D]. 武汉:华中农业大学, 2013.
    [30]谢靖, 唐明. 黄土高原紫穗槐丛枝菌根真菌与土壤因子和球囊霉素空间分布的关系[J]. 西北植物学报, 2012, 32(7):1440-1447.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700