充填型岩溶突水突泥灾害源的核磁共振表征与泥水识别方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characterizing and Identifying Types of Water and Mud Inrush Utilizing Magnetic Resonance Sounding for Tunneling Through Karst Areas with Filling Materials
  • 作者:范克睿 ; 李貅 ; 李宁博 ; 刘征宇
  • 英文作者:FAN Ke-rui;LI Xiu;LI Ning-bo;LIU Zheng-yu;Geotechnical and Structural Engineering Research Center, Shandong University;School of Geology Engineering and Geomatics, Chang'an University;China Renewable Energy Engineering Institute;
  • 关键词:隧道工程 ; 岩溶隧道 ; 核磁共振探测 ; 充填物 ; 突水突泥 ; 超前地质预报
  • 英文关键词:tunnel engineering;;Karst tunnel;;magnetic resonance sounding;;filling material;;water and mud inrush;;geological forward-prospecting
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:山东大学岩土与结构工程研究中心;长安大学地质工程与测绘学院;水利部水利水电规划设计总院;
  • 出版日期:2018-10-15
  • 出版单位:中国公路学报
  • 年:2018
  • 期:v.31;No.182
  • 基金:国家重点研发计划项目(2016YFC0401805)
  • 语种:中文;
  • 页:ZGGL201810005
  • 页数:10
  • CN:10
  • ISSN:61-1313/U
  • 分类号:63-72
摘要
隧道穿越富水岩溶地层时,为预报可能遭遇的突水突泥灾害类型、水量以及突出物信息,需提前探明掌子面前方地层含水量、渗透系数、导水系数等水文地质参数,从而对灾害源进行泥水识别。核磁共振探测(Magnetic Resonance Sounding, MRS)是一种能够直接探明地层水文地质特征的物探方法,基于MRS方法的这一优势,提出一种针对充填型岩溶突水突泥灾害源的核磁共振表征与泥水识别的方法,以期对突水突泥灾害进行预报并加以区分。通过引入Log-Gauss分布函数构建MRS弛豫时间的时空分布函数,用以表征不同灾害所对应的充填物特征;并对掌子面前方电阻率、含水量以及MRS弛豫时间分布进行三维离散,实现了对充填型岩溶突水突泥灾害源的核磁共振表征与建模。在此基础上,正演模拟了不同类型突水突泥灾害源的MRS响应信号,并分析了其响应特征与影响因素。基于灾害源的MRS响应信号特征,利用充填物含水量和MRS弛豫时间的时空分布函数建立了以充填型岩溶突水突泥灾害源的泥水识别因子作为对灾害源进行泥水识别的判据。
        Water and mud inrush hazards can occur when tunneling through water-bearing karst strata. To predict these hazards, the distribution of volumetric water content, permeability, and hydraulic conductivity should be observed during tunneling operations. Magnetic resonance sounding(MRS) is a direct geophysical method for investigating these hydrogeological parameters. In this study, an MRS approach was developed for identifying different types of water and mud inrush hazards and characterizing the filling materials that can cause such hazards. Using a Log-Gauss distribution function, an MRS relaxation distribution function was proposed for characterizing different kinds of inrush hazards. These hazard sources were modeled using a 3-D discretization of the resistivity, volumetric water content, and MRS relaxation time distribution. Subsequently, the MRS responses for different inrush hazard types were stimulated and analyzed, and these responses were combined with the volumetric water content and MRS relaxation time to obtain a type factor that provides a direct judgment for characterizing water and mud inrush hazards.
引文
[1] 李术才.隧道突水突泥灾害源超前地质预报理论与方法[M].北京:科学出版社,2015. LI Shu-cai. The Theory and Method of Geological Prediction for the Disaster Source of Water and Mud Inrush in Tunnels [M]. Beijing: Science Press, 2015.
    [2] 莫阳春.高水压充填型岩溶隧道稳定性研究[D].成都:西南交通大学,2009. MO Yang-chun. Stability Research on High Water Pressure Filled Karst Caves Tunnel [D]. Chengdu: Southwest Jiaotong University, 2009.
    [3] 周宗青.隧道充填型致灾构造突水突泥灾变演化机理及工程应用[D].济南:山东大学,2016. ZHOU Zong-qing. Evolutionary Mechanism of Water Inrush Through Filling Structures in Tunnels and Engineering Applications [D]. Jinan: Shandong University, 2016.
    [4] LI Shu-cai, LIU Bin, XU Xin-ji, et al. An Overview of Ahead Geological Prospecting in Tunneling [J]. Tunnelling & Underground Space Technology, 2017, 63 (3): 69-94.
    [5] LEHMANN-HORN J A, HERTRICH M, GREENHALGH S A, et al. On the Sensitivity of Surface NMR in the Presence of Electrical Conductivity Anomalies [J]. Geophysical Journal International, 2018, 189 (1): 331-342.
    [6] 李 貅,刘文韬,智庆全,等.核磁共振与瞬变电磁三维联合解释方法[J].地球物理学报,2015,58(8):2730-2744. LI Xiu, LIU Wen-tao, ZHI Qing-quan, et al. Three-dimensional Joint Interpretation of Nuclear Magnetic Resonance and Transient Electromagnetic Data [J]. Chinese Journal of Geophysics, 2015, 58 (8): 2730-2744.
    [7] LEGCHENKO A V, SHUSHAKOV O A. Inversion of Surface NMR Data [J]. Geophysics, 1998, 63 (1): 75-84.
    [8] MUELLER-PETKE M, YARAMANCI U. QT Inversion—Comprehensive Use of the Complete Surface NMR Data Set [J]. Geophysics, 2010, 75 (4):WA199-WA209.
    [9] MOHNKE O, YARAMANCI U. Forward Modeling and Inversion of MRS Relaxation Signals Using Multi-exponential Decomposition [J]. Near Surface Geophysics, 2005, 3 (3): 165-185.
    [10] MOHNKE O, YARAMANCI U. Pore Size Distributions and Hydraulic Conductivities of Rocks Derived from Magnetic Resonance Sounding Relaxation Data Using Multi-exponential Decay Time Inversion [J]. Journal of Applied Geophysics, 2008, 66 (3/4): 73-81.
    [11] SCHIROV M, LEGCHENKO A V, CREER G. A New Direct Non-invasive Groundwater Detection Technology for Australia [J]. Exploration Geophysics, 1991, 22 (2): 333-337.
    [12] LEGCHENKO A, BALTASSAT J M, BOBACHEV A, et al. Magnetic Resonance Sounding Applied to Aquifer Characterization. [J]. Groundwater, 2004, 42 (3): 363-373.
    [13] KENYON W E, HOWARD J J, SEZGINER A, et al. Pore-size Distribution and NMR in Microporous Cherty Sandstones [C]// Society of Petrophysicists and Well-Log Analysts. SPWLA 30th Annual Logging Symposium. Denver: Society of Petrophysicists and Well-Log Analysts, 1989: 1-24.
    [14] 林 君,蒋川东,林婷婷,等.地下工程灾害水源的磁共振探测研究[J].地球物理学报,2013,56(11):3619-3628. LIN Jun, JIANG Chuan-dong, LIN Ting-ting, et al. Underground Magnetic Resonance Sounding (UMRS) for Detection of Disastrous Water in Mining and Tunneling [J]. Chinese Journal of Geophysics, 2013, 56 (11): 3619-3628.
    [15] 林 君,赵 越,易晓峰,等.地下磁共振响应特征与超前探测[J].地球物理学报,2018,61(4):1615-1627. LIN Jun, ZHAO Yue, YI Xiao-feng, et al. Characteristics of Underground Magnetic Resonance and Advanced Detection of Hazardous Water [J]. Chinese Journal of Geophysics, 2018, 61 (4): 1615-1627.
    [16] WANG Tai-tien, ZHAN Shang-shu, CHEN Cheng-hsun, et al. Characterizing Fractures to Mitigate Inrush of Water into a Shaft Using Hydrogeological Approaches [J]. Tunnelling & Underground Space Technology, 2017, 61: 205-220.
    [17] 许振浩,李术才,李利平,等.基于层次分析法的岩溶隧道突水突泥风险评估[J].岩土力学,2011,32(6):1757-1766. XU Zhen-hao, LI Shu-cai, LI Li-ping, et al. Risk Assessment of Water or Mud Inrush of Karst Tunnels Based on Analytic Hierarchy Process [J]. Rock & Soil Mechanics, 2011, 32 (6): 1757-1766.
    [18] NIKBAKHTAN B, OSANLOO M. Effect of Grout Pressure and Grout Flow on Soil Physical and Mechanical Properties in Jet Grouting Operations [J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46 (3): 498-505.
    [19] LEVITT M H. Spin Dynamics: Basics of Nuclear Magnetic Resonance [M]. 2nd ed. Chichester: John Wiley & Sons, Inc, 2001.
    [20] BLOCH F. Nuclear Induction [J]. Physica, 1946, 17 (7/8): 460-474.
    [21] WALBRECKER J O, HERTRICH M, GREEN A G. Accounting for Relaxation Processes During the Pulse in Surface NMR Data [J]. Geophysics, 2009, 74 (6): G27-G34.
    [22] MANSFIELD P, MAUDSLEY A A, MORRIS P G, et al. Selective Pulses in NMR Imaging: A Reply to Criticism [J]. Journal of Magnetic Resonance, 1979, 33 (2): 261-274.
    [23] HüRLIMANN M D. Diffusion and Relaxation Effects in General Stray Field NMR Experiments [J]. Journal of Magnetic Resonance, 2001, 148 (2): 367-378.
    [24] WEICHMAN P B, LAVELY E M, RITZWOLLER M H. Theory of Surface Nuclear Magnetic Resonance with Applications to Geophysical Imaging Problems [J]. Physical Review E, 2000, 62 (1): 1290-1312.
    [25] 傅良魁.电法勘探教程[M].北京:地质出版社,1983. FU Liang-kui. The Tutorial of Electrical Exploration Method [M]. Beijing: Geological Publishing House, 1983.
    [26] KLEINBERG R L, KENYON W E, MITRA P P. Mechanism of NMR Relaxation of Fluids in Rock [J]. Journal of Magnetic Resonance, 1994, 108 (2): 206-214.
    [27] 徐志英.岩石力学[M].3版.北京:水利电力出版社,1993. XIU Zhi-ying. Rock Mechanics [M]. 3rd ed. Beijing: Water Resources and Electric Power Press, 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700