碳纳米管增强铝基复合泡沫的阻尼性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Damping properties of Al matrix composite foams reinforced by carbon nanotubes
  • 作者:杨旭东 ; 李宗岷 ; 杨昆明 ; 张权 ; 赵乃勤
  • 英文作者:YANG Xudong;LI Zongmin;YANG Kunming;ZHANG Quan;ZHAO Naiqin;Sino-European Institute of Aviation Engineering,Civil Aviation University of China;School of Materials Science and Engineering,Tianjin University;
  • 关键词:碳纳米管 ; Al ; 复合泡沫 ; 阻尼 ; 界面
  • 英文关键词:carbon nanotubes;;Al;;composite foam;;damping property;;interface
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:中国民航大学中欧航空工程师学院;天津大学材料科学与工程学院;
  • 出版日期:2018-04-16 16:05
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:天津市教委科研计划项目(2018KJ255)
  • 语种:中文;
  • 页:FUHE201902018
  • 页数:7
  • CN:02
  • ISSN:11-1801/TB
  • 分类号:156-162
摘要
通过填加造孔剂方法制备了碳纳米管(CNTs)增强铝基复合泡沫,采用热机械分析仪研究了测试温度、频率、外加振幅、泡沫的孔隙率和CNTs含量对其阻尼性能的影响,并分析了相关阻尼机制。结果表明:复合泡沫铝的阻尼性能随孔隙率和振幅的增大而提高,随着频率的增加而下降。在环境测试温度25~200℃范围内,复合泡沫的损耗因子变化较小;当温度高于200℃后,损耗因子随温度升高有明显的提高。CNTs的加入可以显著提高泡沫铝的阻尼性能,常温下3.0%CNTs增强的铝基复合泡沫的损耗因子达0.27,为泡沫铝的3.71倍。复合泡沫的阻尼机制主要为位错阻尼、晶界阻尼、孔隙阻尼、CNTs的本征阻尼和CNTs-Al间界面阻尼,其中本征和界面阻尼发挥了重要的增强作用。
        The Al matrix composite foams reinforced by carbon nanotubes(CNTs)were fabricated by space-holder method.The effects of test temperature,frequency,amplitude,as well as porosity and CNT content of foams on damping properties were investigated by thermomechanical analyzer,meanwhile the corresponding mechanisms were analyzed systematically.The results show that damping properties increase with the increment of porosity and amplitude,but decrease with the increase of frequency.When the range of environmental test temperature is 25-200℃,the loss factor changes a little.As the temperature is higher than 200℃,the loss factor increases evidently with the increasing of temperature.CNT reinforcement can obviously improve the damping properties.At room temperature,the loss factor of 3.0%CNTs/Al composite foams is 0.27,which is 3.71 times as large as that of Al foams.The damping mechanisms are mainly dislocation damping,grain boundary damping,pore damping,CNTs' inherence damping and CNTs-Al interface damping.It should be noted that the damping of inherence and interface plays an important role in enhancing the damping properties.
引文
[1] ZHANG X X,HOU H W.High damping capacity in porous NiTi alloy with bimodal pore architecture[J].Journal of Alloys and Compounds,2013,550(2):297-301.
    [2] BANHART J,BAUMEISTER J, WEBER M.Damping properties of aluminum foams[J]. Materials Science and Engineering:A,1996,205(1-2):221-228.
    [3] WU J J,LI C G,WANG D B,et al.Damping and sound absorption properties of particle reinforced Al matrix composite foams[J].Composites Science and Technology,2003,63(3):569-574.
    [4]于思荣,罗彦茹,张英波,等.SiCp/ZL104泡沫复合材料的阻尼性能[J].复合材料学报,2007,24(1):65-69.YU S R,LUO Y R,ZHANG Y B,et al.Damping properties of SiCp/ZL104composite foams[J].Acta Materiae Compositae Sinica,2007,24(1):65-69(in Chinese).
    [5] MU Y L,YAO G C,ZU G Y,et al.Influence of strain amplitude on damping property of aluminum foams reinforced with copper-coated carbon fibers[J].Materials and Design,2010,31(9):4423-4426.
    [6]徐平,杨昆,于英华.泡沫铝/环氧树脂复合材料阻尼性能的研究[J].热加工工艺,2013,42(16):110-112,116.XU P,YANG K,YU Y H.Research on damping property of foam aluminum-epoxy resin composite[J].Hot Working Technology,2013,42(16):110-112,116(in Chinese).
    [7] YAKOBSON B I,BRABEC C J.Nanomechanics of carbon tubes:Instabilities beyond linear response[J].Physical Review Letters,1996,76(14):2511-2514.
    [8] LU J P.Elastic properties of carbon nanotubes and nanoropes[J].Physical Review Letters,1997,79(7):1297-1300.
    [9] PAN Z W,XIE S S,LU L.Tensile tests of ropes of very long aligned multiwall carbon nanotubes[J].Applied Physics Letters,1999,74(21):3152-3154.
    [10] SALVETAT J P,BRIGGS G A D,BONARD J M,et al.Elastic and shear modulus of single-walled carbon nanotube ropes[J].Physical Review Letters,1999,82:944-947.
    [11] LI Y L,WANG K L,WEI J Q,et al.Tensile properties of long aligned double-walled carbon nanotube strands[J].Carbon,2005,43(1):31-35.
    [12] KHAN S U,LI C Y,SIDDIQUI N A,et al.Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes[J].Composites Scienced and Technology,2011,71(12):1486-1494.
    [13] WANG J W,YANG X D,ZHANG M,et al.A novel approach to obtain in-situ growth carbon nanotube reinforced aluminum foams with enhanced properties[J].Materials Letters,2015,161:763-766.
    [14] DUARTE I,VENTURA E,OLHERO S,et al.An effective approach to reinforced closed-cell Al-alloy foams with multiwalled carbon nanotubes[J].Carbon,2015,95:589-600.
    [15] DUARTE I,FERREIRA J M F.Composite and nanocomposite metal foams[J].Material Paper Review,2016,9(2):1-34.
    [16] YANG X D,ZOU T C,SHI C S,et al.Effect of carbon nanotube(CNT)content on the properties of in-situ synthesis CNT reinforced Al composites[J].Materials Science and Engineering A,2016,660:11-18.
    [17] YANG X D,LIU E Z,SHI C S,et al.Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility[J].Journal of Alloys and Compounds,2013,563(1):216-220.
    [18] YANG K M,YANG X D,LIU E Z,et al.Elevated temperature compressive properties and energy absorption response of in-situ grown CNT-reinforced Al composite foams[J].Materials Science and Engineering A,2017,690:294-302.
    [19] YANG X D,SHI C S,HE C N,et al.Synthesis of uniformly dispersed carbon nanotube reinforcement in Al powder for preparing reinforced Al composites[J].Composites Part A:Applied Science&Manufacturing, 2011, 42(11):1833-1839.
    [20] GRANATO A,LCKE K.Theory of mechanical damping due to dislocations[J].Journal of Applied Physics,1956,27(6):583-593.
    [21] KT S.A grain boundary model and the mechanism of viscous intercrystalline slip[J].Journal of Applied Physics,1949,20(3):274-280.
    [22] ZHANG J,GUNGOR M N,LAVERNIA E J.The effect of porosity on the microstructural damping response of 6061aluminum alloy[J].Journal of Materials Science,1993,28(6):1515-1524.
    [23] LIU C S,ZHU Z G,HAN F S.Research on the internal friction of foamed aluminum in acoustic frequency[J].Chinese Journal of Materials Research,1997,11(2):153-157.
    [24] DUARTE I,VENTURA E,OLHERO S,et al.A novel approach to prepare aluminum-alloy foams reinforced by carbon-nanotubes[J].Materials Letters,2015,160:162-166.
    [25] ZHANG Z,DING J,XIA X C,et al.Fabrication and characterization of closed-cell aluminum foams with different contents of multi-walled carbon nanotubes[J].Materials and Design,2015,88:359-365.
    [26] DENG C F,WANG D Z,ZHANG X X,et al.Damping characteristics of carbon nanotube reinforced aluminum composite[J].Materials Letters,2007,61(14):3229-3231.
    [27] ZHOU X,SHIN E,WANG K W,et al.Interfacial damping characteristics of carbon nanotube-based composites[J].Composites Science and Technology, 2004, 64(15):2425-2437.
    [28] YU S,LIU J,LUO Y,et al.Compressive behavior and damping property of ZA22/SiCp composite foams[J].Materials Science and Engineering A,2007,457(1):325-328.
    [29] WU G H,DOU Z Y,JIANG L T,et al.Damping properties of aluminum matrix-fly ash composites[J].Materials Letters,2006,60(24):2945-2948.
    [30] LI Q Y,JIANG G F,DONG J,et al.Damping behavior and energy absorption capability of porous magnesium[J].Journal of Alloys and Compounds,2016,680:522-530.
    [31]袁明,于思荣,李凡国.粉煤灰漂珠粒径对粉煤灰漂珠/AZ91D镁合金复合材料阻尼性能的影响[J].复合材料学报,2016,33(8):1742-1748.YUAN M,YU S R,LI F G.Effect of particle size of fly ash cenosphere on damping properties of fly ashcenospheres/AZ91D Mg alloy composites[J].Acta Materiae Compositae Sinica,2016,33(8):1742-1748(in Chinese).
    [32] WATANABE H,MUKAI T,SUGIOKA M,et al.Elastic and damping properties from room temperature to 673Kin an AZ31magnesium alloy[J].Scripta Materialia,2004,51(4):291-295.
    [33] NISHIYAMA K,MATSUI R,IKEDA Y,et al.Damping properties of a sintered Mg-Cu-Mn alloy[J].Journal of Alloys and Compounds,2003,355:22-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700