竹纤维环氧树脂复合材料孔隙特征及其表征方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Void Characteristics and Characterization of Bamboo Fiber/Epoxy Composites
  • 作者:张文福 ; 程海涛 ; 王戈 ; 顾少华
  • 英文作者:Zhang Wenfu;Cheng Haitao;Wang Ge;Gu Shaohua;International Center for Bamboo and Rattan;Zhejiang Forestry Academy;
  • 关键词:竹纤维环氧树脂复合材料 ; 孔隙特征 ; 表征方法
  • 英文关键词:bamboo fiber epoxy resin composite;;void characteristic;;characterization method
  • 中文刊名:SJLY
  • 英文刊名:World Forestry Research
  • 机构:国际竹藤中心;浙江省林业科学研究院;
  • 出版日期:2019-04-16 10:17
  • 出版单位:世界林业研究
  • 年:2019
  • 期:v.32
  • 基金:国家重点研发计划(2017YFD0600802);; 国际竹藤中心基本科研业务费专项资金(1632018015);; 浙江省基础公益研究计划项目(LGG18C160001)
  • 语种:中文;
  • 页:SJLY201903010
  • 页数:6
  • CN:03
  • ISSN:11-2080/S
  • 分类号:58-63
摘要
孔隙是影响环氧树脂基复合材料性能的重要因素之一。以多级孔隙结构竹纤维为增强材料的竹纤维环氧树脂复合材料(BFEC)存在多态性孔隙结构,复合材料性能与孔隙特征存在复杂的关联性,对孔隙进行深入系统地研究具有非常深远的意义。文中分析了BFEC复合材料的孔隙类型、形成和控制方法以及孔隙特征对复合材料性能的影响,对孔隙常规表征方法和新技术手段进行了分类归纳,总结了BFEC复合材料孔隙研究中存在的问题,并提出未来研究方向,以期为调控BFEC复合材料孔隙特征以及揭示孔隙对复合材料的影响提供参考。
        Void is one of the important factors affecting the properties of epoxy resin matrix composites. Bamboo fiber epoxy resin composites(BFEC) with multilevel pore structure bamboo fiber as the reinforcing material have polymorphic void structure, and there is a complex correlation between the properties of the BFEC and void characteristics. It is therefore of great significance to study in depth the void. This paper introduces the void types, formation and control methods of the BFEC, analyzes the effect of void characteristics on the properties of the BFEC, classifies the conventional methods of void characterization methods and new techniques, and concludes the existing problems and research directions in the study of BFEC. It is hoped that this paper would provide a reference for regulating the void characteristics of BFEC and revealing the effect of void on BFEC.
引文
[1]LIESE W.Research on bamboo[J].Wood Science and Technology,1987,21(3):189-209.
    [2]DIXON P G,GIBSON L J.The structure and mechanics of Moso bamboo material[J].Journal of the Royal Society Interface,2014,11:20140321.
    [3]GE W,SHELDON Q S,JINWU W,et al.Tensile properties of four types of individual cellulosic fibers[J].Wood and Fiber Science,2011,43(4):353-364.
    [4]ABDUL K H,BHAT I U H,JAWAID M,et al.Bamboo fibre reinforced biocomposites:a review[J].Materials & Design,2012,42:353-368.
    [5]DEPUYDT D E,SWEYGERS N,APPELS L,et al.Bamboo fibres sourced from three global locations:a microstructural,mechanical and chemical composition study[J/OL].Journal of Reinforced Plastics and Composites.[2019-02-11].https://doi.org/10.1177/0731684419828532.
    [6]苏航,郑水蓉,孙曼灵,等.纤维增强环氧树脂基复合材料的研究进展[J].热固性树脂,2011,26(4):54-57.
    [7]李雪.竹原纤维增强复合材料拉伸破坏行为的表征和模拟[D].重庆:西南大学,2016.
    [8]ZHANG K,WANG F X,LIANG W Y,et al.Thermal and mechanical properties of bamboo fiber reinforced epoxy composites[J].Polymers,2018,10(6):608.DOI:10.3390/polym10060608.
    [9]王戈,顾少华,程海涛,等.竹质滑板面板的开发与研究现状[J].林产工业,2019,46(2):19-23.
    [10]RAJULU A V,CHARY K N,REDDY G R,et al.Void content,density and weight reduction studies on short bamboo fiber-epoxy composites[J].Journal of Reinforced Plastics and Composites,2004,23(2):127-130.
    [11]张阿樱,张东兴,李地红,等.碳纤维/环氧树脂层压板的孔隙问题[J].宇航材料工艺,2011(3):16-19.
    [12]GUPTA A.Synthesis,chemical resistance,and water absorption of bamboo fiber reinforced epoxy composites[J].Polymer Composites,2014,37(1):141-145.
    [13]BOWLES K J,FRIMPONG S.Void effects on the interlaminar shear strength of unidirectional graphite-fiber-reinforced composites[J].Journal of Composite Materials,1992,26(10):1487-1509.
    [14]COSTA M L,DE ALMEIDA S F M,REZENDE M C.The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates[J].Composites Science and Technology,2001,61(14):2101-2108.
    [15]DIXON P G,MUTH J T,XIAO X,et al.3D printed structures for modeling the Young’s modulus of bamboo parenchyma[J].Acta Biomaterialia,2018,68:90-98.
    [16]何盛,徐军,吴再兴,等.毛竹与樟子松木材孔隙结构的比较[J].南京林业大学学报(自然科学版),2017,41(2):157-162.
    [17]OSORIO L,TRUJILLO E,LENS F,et al.In-depth study of the microstructure of bamboo fibres and their relation to the mechanical properties[J].Journal of Reinforced Plastics and Composites,2018,37(17):1099-1113.
    [18]张冬梅,叶金蕊,刘奎,等.孔隙微观特征影响CFRP力学性能的细观综述[J].复合材料学报,2013,30(Suppl1):118-123.
    [19]MEHDIKHANI M,GORBATIKH L,VERPOEST I,et al.Voids in fiber-reinforced polymer composites:a review on their formation,characteristics,and effects on mechanical performance[J].Journal of Composite Materials.[2018-11-20].https://doi.org/10.1177/0021998318772152.
    [20]范云星,李易红,邱欢,等.碳纤维预浸料成型自行车结构件气泡原因及解决方案[J].高科技纤维与应用,2017,42(5):24-27.
    [21]王雪明,谢福原,李敏,等.热压罐成型复合材料复杂结构对制造缺陷的影响规律[J].航空学报,2009,30(4):757-762.
    [22]HAMIDI Y K,DHARMAVARAM S,AKTAS L,et al.Effect of fiber content on void morphology in resin transfer molded E-Glass/Epoxy composites[J].Journal of Engineering Materials and Technology,2009,131(2).DOI:10.1115/IMECE2005-80387.
    [23]王跃飞.碳纤维增强复合材料HP-RTM成型工艺及孔隙控制研究[D].长沙:湖南大学,2017.
    [24]苏玉堂.孔隙含量对复合材料力学性能的影响[J].复合材料学报,1988,5(3):55-61.
    [25]陈平,陈辉.孔隙率对纤维复合材料电学性能和力学性能的影响[J].纤维复合材料,1991(2):15-19.
    [26]PACIORNIK S,D’ALMEIDA J R M.Measurement of void content and distribution in composite materials through digital microscopy[J].Journal of Composite Materials,2008,43(2):101-112.
    [27]STAMOPOULOS A,TSERPES K,PRUCHA P,et al.Evaluation of porosity effects on the mechanical properties of carbon fiber-reinforced plastic unidirectional laminates by X-ray computed tomography and mechanical testing[J].Journal of Composite Materials,2015,50(15):2087-2098.
    [28]朱洪艳.孔隙对碳/环氧复合材料层压板性能的影响与评价研究[D].哈尔滨:哈尔滨工业大学,2010.
    [29]张阿樱,张东兴,朱洪艳,等.碳纤维/环氧树脂层压板孔隙率及力学性能的试验表征[J].玻璃钢/复合材料,2011(1):24-28.
    [30]陈超,张娅婷,顾轶卓,等.碳纤维/环氧复合材料孔隙缺陷的工艺影响因素研究[J].玻璃钢/复合材料,2014(5):51-55.
    [31]SCHIWARTH M,WEISSENBOCK J,PLANK B,et al.Visual analysis of void and reinforcement characteristics in X-ray computed tomography dataset series of fiber-reinforced polymers[J].IOP Conference Series:Materials Science and Engineering,2018,406(1):012014.DOI:10.1088/1757-899X/406/1/012014.
    [32]孙韬.湿热环境下孔隙对CFRP力学性能的影响研究[D].哈尔滨:哈尔滨工业大学,2010.
    [33]汤栋,赵玉萍,张娟,等.竹纤维热固性树脂基复合材料力学性能的研究[J].材料导报,2011,25(增刊1):408-410.
    [34]KHAN Z,YOUSIF B F,ISLAM M.Fracture behaviour of bamboo fiber reinforced epoxy composites[J].Composites Part B:Engineering,2017,116:186-199.
    [35]BISWAS S,DEBNATH K,PATNAIK A.Mechanical behaviour of short bamboo fiber reinforced epoxy composites filled with alumina particulate[C].Kathmandu Symposia on Advanced Materials 2012,Kathmandu,Nepal,2012:1-8.
    [36]SATHISH S,KUMARESAN K,PRABHU L,et al.Experimental investigation on volume fraction of mechanical and physical properties of flax and bamboo fibers reinforced hybrid epoxy composites[J].Polymers & Polymer Composites,2017,25(3):229-236.
    [37]DEPUYDT D E C,SOETE J,ASFAW Y D,et al.Sorption behaviour of bamboo fibre reinforced composites,why do they retain their properties?[J].Composites Part A:Applied Science and Manufacturing,2019,119:48-60.
    [38]王蕾,张福勤,夏莉红,等.压汞法分析C/C复合材料平板的孔隙结构[J].矿冶工程,2009,29(4):95-98.
    [39]苌姗姗,胡进波,BRUNO C,等.氮气吸附法表征杨木应拉木的孔隙结构[J].林业科学,2011,47(10):134-140.
    [40]王哲,王喜明.木材多尺度孔隙结构及表征方法研究进展[J].林业科学,2014,50(10):123-133.
    [41]XUEXIA Z,JING L,YAN Y,et al.Investigating the water vapor sorption behavior of bamboo with two sorption models[J].Journal of Materials Science,2018,53(11):8241-8249.
    [42]OSORIO L,TRUJILLO E,VUURE A W V,et al.Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/ epoxy composites[J].Journal of Reinforced Plastics and Composites,2011,30(5):396-408.
    [43]费本华,刘嵘,刘贤淼,等.竹材纹孔结构及表征方法研究进展[J].林业工程学报,2019,4(2):1-7.
    [44]彭冠云.基于CT技术检测木材、竹材结构特征的研究[D].北京:中国林业科学研究院,2009.
    [45]NGUYEN T T B,MORIOKA M,YOKOYAMA A,et al.Measurement of fiber orientation distribution in injection-molded short-glass-fiber composites using X-ray computed tomography[J].Journal of Materials Processing Technology,2015,219:1-9.
    [46]王羽,汪丽华,王建强,等.基于聚焦离子束-扫描电镜方法研究页岩有机孔三维结构[J].岩矿测试,2018,37(3):235-243.
    [47]王次臣.基于深度学习的大规模图数据挖掘[D].南京:南京邮电大学,2017.
    [48]胡伟俭,陈为,冯浩哲,等.应用于平扫CT图像肺结节检测的深度学习方法综述[J].浙江大学学报(理学版),2017,44(4):379-384.
    [49]嵇伟伟.基于深度学习的医学CT图像中器官的区域检测[D].南京:南京师范大学,2018.
    [50]文琼华,孟江燕,龚楚,等.碳纤维增强树脂基复合材料孔隙率检测方法的分析比较[J].玻璃钢/复合材料,2016(7):32-37.
    [51]陆铭慧,张雪松,郑善朴,等.基于超声的碳纤维复合材料孔隙率表征方法对比研究[J].玻璃钢/复合材料,2018(7):42-48.
    [52]曾俊.基于超声发射技术的东北东部主要树种空穴化研究[D].哈尔滨:东北林业大学,2017.
    [53]张训亚,姜笑梅,殷亚方.木材声-超声检测技术国内外研究现状[J].木材加工机械,2018,29(2):34-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700