人为干扰对中亚热带森林生物量及其空间分布格局的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of different degrees of anthropogenic disturbance on biomass and spatial distribution in Subtropical forests in Central Southern China
  • 作者:李尚益 ; 方晰 ; 陈金磊 ; 李雷达 ; 辜翔 ; 刘兆丹 ; 张仕吉
  • 英文作者:LI Shangyi;FANG Xi;CHEN Jinlei;LI Leida;GU Xiang;LIU Zhaodan;ZHANG Shiji;School of Life Science and Technology,Central South University of Forestry and Technology;Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantations Ecosystem in Hunan Province;
  • 关键词:湘中丘陵区 ; 灌草丛 ; 灌木林 ; 针阔混交林 ; 常绿阔叶林 ; 物种多样性
  • 英文关键词:hilly area of Hunan Province;;scrub-grass-land;;shrubbery;;coniferous-broad leaved mixed forest;;evergreen broad-leaved forest;;species diversity
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中南林业科技大学生命科学与技术学院;湖南会同杉木林生态系统国家野外科学观测研究站;
  • 出版日期:2018-05-30 10:56
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:林业公益性行业科研专项(201504411);; 国家林业局林业软科学研究项目(2014—R11)
  • 语种:中文;
  • 页:STXB201817014
  • 页数:14
  • CN:17
  • ISSN:11-2031/Q
  • 分类号:133-146
摘要
为揭示不同程度的人为干扰对中亚热带森林生物量及其空间分布格局的影响机制,在湘中丘陵区4种处于不同程度的人为干扰、地域相邻的植物群落:檵木-南烛-满山红灌草丛(LVR)、檵木-杉木-白栎灌木林(LCQ)、马尾松-石栎-檵木针阔混交林(PLL)、石栎-红淡比-青冈常绿阔叶林(LAG)设置固定样地,结合植物群落调查,采用收获法和建立主要树种各器官生物量相对生长方程,测定和估算群落生物量。结果表明:(1)随着人为干扰程度减弱,群落总生物量呈显著的指数函数增长(P<0.05),地上部分、地下部分生物量表现为异速生长,LAG与PLL乔木层生物量差异不显著(P>0.05),4个群落灌木层生物量及其各器官、地上部分、地下部分生物量均呈先增加后下降的变化特征,草本层生物量及其地上部分、地下部分生物量先下降再增高,凋落物层现存量总体上呈增加趋势;(2)不同程度的人为干扰,群落生物量的空间分布格局不同,LVR群落灌木层、草本层生物量相当,LCQ群落灌木层生物量占明显优势,草本层生物量下降,PLL和LAG群落乔木层生物量占绝对优势,灌木层、草本层和凋落物层生物量占群落总生物量低于10%;(3)群落总生物量与树种多样性指数呈显著的正相关(P<0.05),与土壤有机碳、全氮、水解氮、有效磷含量呈显著的正相关(P<0.05),表明不同程度的人为干扰造成群落树种多样性、土壤养分含量的变化,是导致群落生物量变化的主要因素。
        This study sought to assess the effects and underlying mechanisms of anthropogenic disturbance on biomass and spatial distribution pattern in subtropical forests in central southern China. Four types of forests were chosen in a hilly area of the central Hunan Province,China,including: 1) Loropetalum chinense-Vaccinium bracteatum.-Rhododendron mariesii.scrub-grass-land( LVR),2) Loropetalum chinense-Cunninghamia lanceolata-Quercus fabri shrubbery( LCQ),3) Pinus massoniana-Lithocarpus glaber-Loropetalum chinense coniferous-broad leaved mixed forest( PLL) and 4) Lithocarpus glaberCleyera japonica-Cyclobalanopsis glauca evergreen broad-leaved forest( LAG),which all suffered different degrees from human disturbances. According to the community characteristics,three or four standard plots were established and the standing biomass for the herb,shrub,and tree layers were investigated. Total harvesting method and allometric equations ofbiomass were established for the dominant tree species. The results showed that:( 1) the total biomass increased exponentially with decreased anthropogenic disturbances( P < 0. 05),while the aboveground and belowground biomass showed allometric patterns. Among different layers,the biomass in the arbor layer in LAG and PLL were not significantly different( P>0.05),while the biomass for the shrub layer,either for different organs or the aboveground and belowground parts,increased first and then decreased in the forest stages. The biomass for the herb layer showed the opposite trend,declining first and then increasing. The standing litter crops increased gradually with declining degrees of disturbance.( 2)With different degrees of human disturbance,the spatial allocation pattern of standing biomass showed high variety. The shrub and herb layers were in the dominant position in LVR community,and the biomass of the shrub layer in LCQ community showed higher contributions,while that of the herb layer declined. In PLL and LAG community,however,the biomass of the arbor layer had an absolute advantage,while the biomass in shrub,herb,and litter layers accounted for less than 10%.( 3) The correlation analysis showed that total biomass was significantly positively correlated with species diversity index,contents of soil organic carbon,total nitrogen,hydrolytic nitrogen,and available phosphorus,suggesting that the change of community tree species diversity and soil nutrient content were the main causes affecting the change of community biomass during different degrees of anthropogenic disturbances.
引文
[1]张蔷,李家湘,徐文婷,熊高明,谢宗强.中国亚热带山地杜鹃灌丛生物量分配及其碳密度估算.植物生态学报,2017,41(1):43-52.
    [2] Ahmed R,Siqueira P,Hensley S. A study of forest biomass estimates from lidar in the northern temperate forests of New England. Remote Sensing of Environment,2013,130:121-135.
    [3] Poorter H,Niklas K J,Reich P B,Oleksyn J,Poot P,Mommer L. Biomass allocation to leaves,stems and roots:Meta-analyses of interspecific variation and environmental control. New Phytologist,2012,193(1):30-50.
    [4] Brown S,Sathaye J,Canell M,Kauppi P E. Mitigation of carbon emissions to the atmosphere by forest management. Commonwealth Forestry Review,1996,75:80-91.
    [5]赵士洞,汪业勖.森林与碳循环.科学对社会的影响,2001,(3):38-41.
    [6]范文义,李明泽,杨金明.长白山林区森林生物量遥感估测模型.林业科学,2011,47(10):16-20.
    [7] Houghton R A. Aboveground forest biomass and the global carbon balance. Global Change Biology,2005,11(6):945-958.
    [8] Whittaker R H,Likens G E. Primary production:the biosphere and man. Human Ecology,1973,1(4):357-369.
    [9]李文华.森林生物生产量的概念及其研究的基本途径.自然资源,1978,(1):71-92.
    [10]巨文珍,农胜奇.森林生物量研究进展.西南林业大学学报,2011,31(2):78-83,89-89.
    [11]潘维俦,李利村,高正衡,张相琼,唐东元.杉木人工林生态系统中的生物产量及其生产力的研究.湖南林业科技,1978,(5):1-12.
    [12]冯宗炜,陈楚莹,张家武,王开平,赵吉录,高虹.湖南会同地区马尾松林生物量的测定.林业科学,1982,18(2):127-134.
    [13] Tahvanainen T,Forss E. Individual tree models for the crown biomass distribution of Scots pine,Norway spruce and birch in Finland. Forest Ecology and Management,2008,255(3/4):455-467.
    [14] Pattison R R,Goldstein G,Ares A. Growth,biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia,1998,117(4):449-459.
    [15] Esteban L S,Carrasco J E. Evaluation of different strategies for pulverization of forest biomasses. Powder Technology,2006,166(3):139-151.
    [16] Houghton R A,Lawrence K T,Hackler J L,Brown S. The spatial distribution of forest biomass in the Brazilian Amazon:a comparison of estimates.Global Change Biology,2010,7(7):731-746.
    [17]王晓莉,常禹,陈宏伟,胡远满,焦琳琳,冯玉婷,吴文,伍海峰.黑龙江省大兴安岭森林生物量空间格局及其影响因素.应用生态学报,2014,25(4):974-982.
    [18]lvarez-Martínez J M,Stoorvogel J J,Suárez-Seoane S,de Luis Calabuig E. Uncertainty analysis as a tool for refining land dynamics modelling on changing landscapes:a case study in a Spanish Natural Park. Landscape Ecology,2010,25(9):1385-1404.
    [19] Anderson K. A climatologically based long-range fire growth model. International Journal of Wildland Fire,2010,19(7):879-894.
    [20] Baruffol M,Schmid B,Bruelheide H,Chi X L,Hector A,Ma K P,Michalski S,Tang Z P,Niklaus P A. Biodiversity promotes tree growth during succession in subtropical forest. PLoS One,2013,8(11):e81246.
    [21]中国植被编辑委员会.中国植被.北京:科学出版社,1980.
    [22]李昌华.亚洲东部常绿阔叶林的分布.自然资源,1997,(2):37-45.
    [23]王希华,闫恩荣,严晓,王良衍.中国东部常绿阔叶林退化群落分析及恢复重建研究的一些问题.生态学报,2005,25(7):1796-1803.
    [24]李振基,刘初钿,杨志伟,何建源,林鹏.武夷山自然保护区郁闭稳定甜槠林与人为干扰甜槠林物种多样性比较.植物生态学报,2000,24(1):64-68.
    [25]朱锦懋,姜志林,蒋伟,郑群瑞,江训强.人为干扰对闽北森林群落物种多样性的影响.生物多样性,1997,5(4):263-270.
    [26]江明喜,金义兴,贺金生,陈伟烈,沈泽昊.人为干扰对马尾松次生林多样性的影响.长江流域资源与环境,1995,4(4):356-361.
    [27]宋凯,米湘成,贾琪,任海保,Bebber D,马克平.不同程度人为干扰对古田山森林群落谱系结构的影响.生物多样性,2011,19(2):190-196.
    [28]杨一,王懿祥,白尚斌,刘蕾蕾,朱婷婷,朱旭丹,尤誉杰.临安次生灌丛植物多样性对林火烈度空间异质性的响应.生态学报,2016,36(14):4438-4446.
    [29]张希彪,上官周平.人为干扰对黄土高原子午岭油松人工林土壤物理性质的影响.生态学报,2006,26(11):3685-3695.
    [30]魏亚伟,苏以荣,陈香碧,何寻阳.人为干扰对桂西北喀斯特生态系统土壤有机碳、氮、磷和微生物量剖面分布的影响.水土保持学报,2010,24(3):164-169.
    [31]尤誉杰,王懿祥,张华锋,邱烷婷,吴敏娟.不同人为干扰措施对天然次生灌丛土壤肥力及蓄水能力的影响.生态学报,2018,38(3):1097-1105.
    [32]王敏,贺红士,梁宇,吴志伟.采伐强度对长白山森林地上生物量和景观格局的长期影响.生态学杂志,2014,33(10):2581-2587.
    [33]明安刚,张治军,谌红辉,张显强,陶怡,苏勇.抚育间伐对马尾松人工林生物量与碳贮量的影响.林业科学,2013,49(10):1-6.
    [34]段劼,马履一,贾黎明,贾忠奎,公宁宁,车文瑞.抚育间伐对侧柏人工林及林下植被生长的影响.生态学报,2010,30(6):1431-1441.
    [35]陈勇梅.连续施肥对杉木幼林生物量的影响.安徽农业科学,2015,43(19):157-158.
    [36]郑路,卢立华.我国森林地表凋落物现存量及养分特征.西北林学院学报,2012,27(1):63-69.
    [37] Ouyang S,Xiang W H,Wang X P,Zeng Y L,Lei P F,Deng X W,Peng C H. Significant effects of biodiversity on forest biomass during the succession of subtropical forest in south China. Forest Ecology and Management,2016,372:291-302.
    [38]刘雯雯,项文化,田大伦,闫文德.区域尺度杉木生物量通用相对生长方程整合分析.中南林业科技大学学报,2010,30(4):7-14.
    [39] LüX T,Tang J W,Feng Z L,Li M H. Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna,SW China. Revista de Biología Tropical,2009,57(1/2):211-222.
    [40]姚正阳,刘建军.西安市4种城市绿化灌木单株生物量估算模型.应用生态学报,2014,25(1):111-116.
    [41] Ali A,Xu M S,Zhao Y T,Zhang Q Q,Zhou L L,Yang X D,Yan E R. Allometric biomass equations for shrub and small tree species in subtropical China. Silva Fennica,2015,49(4):1275.
    [42]中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法.北京:科学出版社,1984.
    [43]王长庭,曹广民,王启兰,景增春,丁路明,龙瑞军.青藏高原高寒草甸植物群落物种组成和生物量沿环境梯度的变化.中国科学C辑:生命科学,2007,37(5):585-592.
    [44]孙玉军,马炜,刘艳红.与物种多样性有关的长白落叶松人工林生物量.生态学报,2015,35(10):3329-3338.
    [45]王长庭,龙瑞军,曹广民,王启兰,景增春,施建军.高寒草甸不同类型草地土壤养分与物种多样性——生产力关系.土壤通报,2008,39(1):1-8.
    [46]赵景学,陈晓鹏,曲广鹏,多吉顿珠,尚占环.藏北高寒植被地上生物量与土壤环境因子的关系.中国草地学报,2011,33(1):59-64.
    [47] Nordin A,H9gberg P,Nsholm T. Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia,2001,129(1):125-132.
    [48] Pei S F,Fu H,Wan C G. Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia,China. Agriculture,Ecosystems&Environment,2008,124(1/2):33-39.
    [49]黄宗胜,符裕红,喻理飞.喀斯特森林植被自然恢复中凋落物现存量及其碳库特征演化.林业科学研究,2013,26(1):8-14.
    [50]吕晓涛,唐建维,何有才,段文贵,宋军平,许海龙,朱胜忠.西双版纳热带季节雨林的生物量及其分配特征.植物生态学报,2007,31(1):11-22.
    [51]林思祖,杨梅,曹子林,刘洪波,陈艳.不同强度人为干扰对马尾松地上部分生物量及生产力的影响.西北植物学报,2004,24(3):516-522.
    [52] Mc Connaughay K D M,Coleman J S. Biomass allocation in plants:ontogeny or optimality? A test along three resource gradients. Ecology,1999,80(8):2581-2593.
    [53] Bloom A J,Chapin III F S,Mooney H A. Resource limitation in plants—An economic analogy. Annual Review of Ecology and Systematics,1985,16:363-392.
    [54] Mokany K,Raison R J,Prokushkin A S. Critical analysis of root:shoot ratios in terrestrial biomes. Global Change Biology,2006,12(1):84-96.
    [55] Mc Carthy M C,Enquist B J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology,2007,21(4):713-720.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700