基于ADXL355加速度传感器的人体呼吸位移测量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Measurement of human respiratory displacement based on ADXL355 acceleration sensor
  • 作者:曹文 ; 司高潮 ; 姚永杰 ; 王伟 ; 戴圣龙 ; 李川涛
  • 英文作者:CAO Wen;SI Gao-chao;YAO Yong-jie;WANG Wei;DAI Sheng-long;LI Chuan-tao;Department of Aviation Medicine, Naval Medical Research Institute, the Second Military Medical University;
  • 关键词:加速度传感器 ; 呼吸信号测量 ; 加速度积分 ; 位移计算 ; 呼吸位移
  • 英文关键词:acceleration sensor;;respiratory signal measurement;;acceleration integration;;displacement calculation;;respiratory displacement
  • 中文刊名:YNWS
  • 英文刊名:Chinese Medical Equipment Journal
  • 机构:海军军医大学海军医学研究所航空医学研究室;
  • 出版日期:2018-09-15
  • 出版单位:医疗卫生装备
  • 年:2018
  • 期:v.39;No.291
  • 基金:海装军内科研支持项目(HJ20172A02133)
  • 语种:中文;
  • 页:YNWS201809001
  • 页数:5
  • CN:09
  • ISSN:12-1053/R
  • 分类号:7-11
摘要
目的 :探索高精度加速度传感器用于人体呼吸位移测量的可行性。方法 :以高精度加速度传感器ADXL355为核心器件,设计低功耗、高精度无线加速度采集系统。结合呼吸运动的频率特征,基于加速度二次积分可计算位移的原理,设计2种准周期微弱运动的位移测量算法。结果:仿真实验表明,设计的二次加速度积分呼吸位移求解算法有效。实验结果表明所设计的采集系统和算法能够计算出人体的呼吸位移。结论:高精度加速度传感器可用于人体呼吸位移的测量,为人体呼吸位移测量提供了新方法。
        Objective To explore the possibility of using high-precision acceleration sensor measuring the respiratory displacement of human body. Methods With ADXL355 acceleration sensor as the core component, a wireless acceleration acquisition system was designed, featuring low power consumption and high precision. In this research, two kinds of displacement measurement algorithms for quasi periodic weak motion were designed in combination with the respiratory frequency characteristics and the acceleration to displacement calculating principle by double integral for time. Results The simulation experiments showed that the double integration respiration displacement measurement algorithms were effective.The practical tests indicated that the acquisition system and algorithms could realize respiration movement displacement measurement. Conclusion High-precision acceleration sensor can measure the human respiration movements, which contributes to realizing a new method for measuring human respiration displacement.
引文
[1]LI C,LUBECKE V M,BORIC-LUBECKE O,et al.A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring[J].IEEE Trans Microw Theory Tech,2013,61(5):2 046-2 060.
    [2]GU C,LI C.Assessment of human respiration patterns via noncontact sensing using Doppler multi-radar system[J].Sensors,2015,15(3):6 383.
    [3]LI C,CHEN F,QI F,et al.Searching for survivors through random human-body movement outdoors by continuouswave radar array[J].PLo S One,2016,11(4):e0152201.
    [4]张建华,余辉,黑灵巧,等.体部伽马刀放疗中精确靶位控制系统的仿真设计[J].郑州大学学报(工学版),2013,34(3):22-25.
    [5]李晓媛,李忠文,吕文杰.无线生理信号监测系统的开发设计[J].郑州大学学报(工学版),2012,33(4):77-80.
    [6]杨文艳,吴琼雅,贺晓东.呼吸门控技术应用于肺癌放疗的探讨[J].肿瘤,2017,37(1):58-64.
    [7]侯向锋,刘蓉,周兆丰.加速度传感器MMA7260在步态特征提取中的应用[J].传感技术学报,2007,20(3):507-511.
    [8]胡弢,王蕾,侯琳琳,等.基于加速度传感器的睡眠体位监测方法的研究[J].中国医学物理学杂志,2012,29(4):3 542-3 545.
    [9]冯晓明.基于腕动信号的睡眠质量监测装置设计[D].广州:华南理工大学,2014.
    [10]陈炎,李丹,李彦海,等.基于加速度传感器的心率信号处理及检测方法[J].科学技术与工程,2016,16(9):67-70.
    [11]姬军,刘亚军,张鹏,等.基于加速度传感器检测睡眠中的周期性腿动事件[J].中国医疗设备,2008,23(5):23-25.
    [12]赵吕晨,吴薇,曾宪奕,等.基于多加速度传感器的胎动信号检测方法[J].传感器与微系统,2016,35(12):20-23.
    [13]SATO M,ISOYAMA T,SAITO I,et al.Detection of the number of respiration through employing a 3-axis accelerometer[J].Eur J Cancer Clin Oncol,2014,23(11):1 659-1 664.
    [14]容太平,袁中平.用加速度传感器测量位移的原理与误差分析[J].华中科技大学学报(自然科学版),2000,28(5):58-60.
    [15]周小祥,陈尔奎,吕桂庆,等.基于数字积分和LMS的振动加速度信号处理[J].自动化仪表,2006,27(9):51-53.
    [16]顾名坤,吕振华.基于振动加速度测量的振动速度和位移信号识别方法探讨[J].机械科学与技术,2011,30(4):522-526.
    [17]LI C,CHEN F,JIN J,et al.A method for remotely sensing vital signs of human subjects outdoors[J].Sensors,2015,15(7):14 830-14 844.
    [18]徐庆华.试采用FFT方法实现加速度、速度与位移的相互转换[J].振动、测试与诊断,1997,17(4):30-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700