PERC电池背表面钝化的PC1D仿真分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:PC1D SIMULATION ANALYSIS ON BACK SURFACE PASSIVATION OF PERC SOLAR CELL
  • 作者:李宁 ; 谷书辉 ; 任丙彦
  • 英文作者:Li Ning;Gu Shuhui;Ren Bingyan;School of Materials Science and Engineering,Hebei University of Technology;
  • 关键词:太阳电池 ; 表面电荷 ; 钝化 ; 钝化发射极及背局域接触电池
  • 英文关键词:solar cell;;surface electric charge;;passivation;;passivation emitter and rear contact(PERC) cell
  • 中文刊名:TYLX
  • 英文刊名:Acta Energiae Solaris Sinica
  • 机构:河北工业大学材料科学与工程学院;
  • 出版日期:2018-05-23 16:01
  • 出版单位:太阳能学报
  • 年:2018
  • 期:v.39
  • 基金:国家高技术研究发展(863)计划(2012AA050301)
  • 语种:中文;
  • 页:TYLX201808027
  • 页数:6
  • CN:08
  • ISSN:11-2082/TK
  • 分类号:199-204
摘要
采用PC1D软件仿真分析钝化发射极及背接触(passivation emitter and rear contact,PERC)电池;模拟结果表明:降低电池的背表面复合速率有利于增强电池性能、提高电池长波响应。PERC电池由于背表面钝化可采用较低的背场厚度;背钝化层中的表面电荷对高背表面复合速率的电池性能的提升作用显著,但在背表面复合速率较低时影响不大;实测得到PERC电池比常规全铝背接触电池的开路电压和短路电流分别增大1.56%和2.56%。
        PC1 D software was used to simulate and analyze passivation emitter and rear contact(PERC)cell.The simulation results show that reducing rear surface recombination velocity is helpful to enhance cell performance and improve the long wave response of the cell.The PERC cell can use thin back-field thickness due to back surface passivation;the surface electric charge in the back passivation layer has a significant effect on improving the performance of the cell with a high back surface recombination rate,but it has little effect when the back surfacere combination rate is low.The measured open circuit voltage and short circuit current of PERC cell are 1.56% and 2.56% higher than those of conventional all aluminum back contact solar cells,respectively.
引文
[1]Benabadji B,Zerg A.Optimal design of buried emitterof EWT silicon solar cells type by numerical simulation[J].Energy Procedia,2014,44(2):126—131.
    [2]Zhao Suxiang,Qiao Qi,Zhang Song,et al.Rearpassivation of commercial multi-crystalline PERC solarcell by PECVD Al2O3[J].Applied Surface Science,2014,290(2):66—70.
    [3]Gatz S,Müller J,Dullweber T,et al.Analysis andoptimization of the bulk and rear recombination ofscreen-printed PERC solar cells[J].Energy Procedia,2012,27:95—102.
    [4]Dullweber T,Gatz S,Hannebauer H,et al.Towards20%efficient large-area screen-printed rear-passivatedsilicon solar cells[J].Progress in Photovoltaics,2012,20(6):630—638.
    [5]Kumar A,Bieri M,Reindl T,et al.Economic viabilityanalysis of silicon solar cell manufacturing:Al-BSFversus PERC[J].Energy Procedia,2017,130:43—49.
    [6]Reynolds W D.A unified PERC test-well permeametermethodology for absorption field investigations[J].Geoderma,2016,264(2):160—170.
    [7]W?hrle N,Fellmeth T,Greulich J,et al.Understanding the rear-side layout of p-dopedbifacial PERC solar cells with simulation drivenexperiments[J].Energy Procedia,2017,124:225—234.
    [8]Wolny F,Weber T,Fischer G,et al.Enhanced stableregeneration of high efficiency Cz PERC cells[J].EnergyProcedia,2015,77:546—550.
    [9]Gro?er S,Swatek S,Pantzer J,et al.Quantification ofvoid defects on PERC solar cell rear contacts[J].EnergyProcedia,2016,92:37—41.
    [10]Herguth A,Horbelt R,Wilking S,et al.Comparison ofBO regeneration dynamics in PERC and Al-BSF solarcells[J].Energy Procedia,2015,77:75—82.
    [11]To A,Li Weimin,Li Xiang,et al.The effects ofbifacial deposition of ALD Al Oxon the contact propertiesof screen-printed contacts for p-type PERC solar cells[J].Energy Procedia,2017,124:914—921.
    [12]Kranz C,Petermann J H,Dullweber T,et al.Simulation-based efficiency gain analysis of 21.2%-efficient screen-printed PERC solar cells[J].EnergyProcedia,2016,92(8):109—115.
    [13]Nicolai M,Zanuccoli M,Galiazzo M,et al.Simulationstudy of light-induced current-induced degradationand recovery on PERC solar cells[J].Energy Procedia,2016,92:153—159.
    [14]李幼真,周继承,黄迪辉,等.单晶硅太阳电池背场欧姆接触的改善研究[J].太阳能学报,2011,32(1):41—44.[14]Li Youzhen,Zhou Jicheng,Huang Dihui,et al.Theimprovement research on back surface OMIC contact ofcrystline silicon solar cells[J].Acta Energiae SolarisSinica,2011,32(1):41—44.
    [15]李想,颜钟惠,刘阳辉,等.原子层沉积Al2O3薄膜钝化n型单晶硅表面的研究[J].材料导报,2013,27(8):40—43.[15]Li Xiang,Yan Zhonghui,Liu Yanghui,et al.Theeffects of bifacial deposition of ALD Al Oxon the contactproperties of screen-printed contacts for n-type PERCsolar cells[J].Materials Review,2013,27(8):40—43.
    [16]孙国辉,晏石林,陈刚.太阳电池电极与铝背场烧结过程的数值模拟分析[J].系统仿真学报,2008,20(22):6103—6105.[16]Sun Guohui,Yan Shilin,Chen Gang.Numericalsimulation on sintering process of solar cell electrodeand aluminum-alloyed back surface field[J].Journal ofSystem Simulation,2008,20(22):6103—6105.
    [17]Haug H,Wiig M S,S?nden?R,et al.Simulating theeffect of lifetime non-uniformity on solar cellperformance using CMD-PC1D 6 and griddler 2[J].Energy Procedia,2016,92:69—74.
    [18]Wang Kai,Perez-Warfl I.A method to overcome thetime step limitation of PC1D in transient excitation mode[J].Energy Procedia,2014,55:155—160.
    [19]Huang Haibing,Lyu Jun,Bao Yameng,et al.Data ofthe recombination loss mechanisms analysis on Al2O3PERC cell using PC1D and PC2D simulations[J].Datain Brief,2017,11:27—31.
    [20]Haug H,Kimmerle A,Greulich J,et al.Implementation of Fermi-Dirac statistics and advancedmodels in PC1D for precise simulations of silicon solarcells[J].Solar Energy Materials and Solar Cells,2014,131:30—36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700