钒钛磁铁矿综合利用现状及进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comprehensive Utilization Status and Progress of Vanadium Titano-magnetite
  • 作者:彭英健 ; 吕超
  • 英文作者:PENG Yingjian;LV Chao;Institute of Coal,Shanxi Datong University;
  • 关键词:钒钛磁铁矿 ; 共伴生 ; 钒钛资源 ; 综合利用
  • 英文关键词:Vanadium titano-magnetite;;Co-associated;;Vanadium titanium resources;;Comprehensive utilization
  • 中文刊名:KYYK
  • 英文刊名:Mining Research and Development
  • 机构:山西大同大学煤炭工程学院;
  • 出版日期:2019-05-24
  • 出版单位:矿业研究与开发
  • 年:2019
  • 期:v.39;No.226
  • 基金:国家自然科学基金青年科学基金资助项目(51604247);; 山西大同大学博士科研启动项目(2016-B-21)
  • 语种:中文;
  • 页:KYYK201905027
  • 页数:6
  • CN:05
  • ISSN:43-1215/TD
  • 分类号:134-139
摘要
钒钛磁铁矿是一种典型的金属共伴生铁矿资源,具有极高的综合利用价值。我国对钒钛磁铁矿精矿主要以高炉转炉冶炼为主,该技术生产规模大,技术成熟,但钒钛资源回收利用率较低,环境污染较大且运行成本较高;还原-磨选法工艺难以控制,铁和钒钛分离不完全,应用困难较大;还原-熔分工艺可以实现有价组元的高效分离,是综合利用钒钛磁铁矿最有前途的技术。对于攀枝花钒钛磁铁矿精矿,为获得TiO2含量大于55%以上可利用级别的熔分钛渣,开展了还原-熔分工艺的工业应用。精矿原料深度除杂和气基还原可促进钒钛磁铁矿精矿中钛资源的利用。
        Vanadium titano-magnetite is a typical metal-associated iron ore resource with comprehensive utilization value.Smelting vanadium titano-magnetite concentrate in China mainly adopted blast furnace-converter process,which has advantages of large-scale production and reliable technology.However,the recycling rate of vanadium and titanium was low,environmental pollution was large and the operating cost was high.Moreover,it was difficult to control the reduction-grinding process,and the separation of iron from vanadium and titanium was not complete,so the application of this technology was difficult.But the reduction-melting process could realize the goal of the efficient separation of valuable components,and it was the most promising technology for the comprehensive utilization of vanadium titano-magnetite concentrate.For Panzhihua vanadium titano-magnetite concentrate,in order to obtain the titanium slag with TiO2 content greater than 55% of available grade,the reduction-melting process was applied.The complete impurity removal of concentrate material and gas-based reduction could promote the utilization of titanium resources in vanadium titano-magnetite concentrate.
引文
[1]刘世友.钒的应用与展望[J].稀有金属与硬质合金,2000(2):58-61.
    [2]和喜,魏克湘,李建明,等.航空用钛合金研究进展[J].中国有色金属学报,2015,25(2):280-292.
    [3]邓君,薛逊,刘功国.攀钢钒钛磁铁矿资源综合利用现状与发展[J].材料与冶金学报,2007(2):83-86+93.
    [4]Taylor P R,Shuey S A,Vidal E E,et al.Extractive Metallurgy of Vanadium-Containing Titaniferous Mgnetite Ores:A Review[J].Minerals and Metallurgical Prcocessing,2006,23(2):80-86.
    [5]吕庆,唐琦,孙艳芹,等.钒钛磁铁矿高炉冶炼的炉渣性质与钒氧化物还原关系[J].钢铁钒钛,2016,37(6):1-4+12.
    [6]马家源,孙希文,盛世雄.钒钛磁铁矿高炉冶炼的强化[J].钢铁,2000(1):4-8+12.
    [7]刁日升.对高炉冶炼钒钛磁铁矿问题的新认识[J].钢铁,1999(6):14-16+40.
    [8]杜鹤桂.高炉冶炼钒钛磁铁矿原理[M].北京:科学出版杜,1996.
    [9]He S Q,Sun H J,Tan D Y,et al.Recovery of titanium compounds from Ti-enriched product of alkali melting Tibearing blast furnace slag by dilute sulfuric acid leaching[C]//Selected Proceedings of the Tenth International Conference on Waste Management and Technology,2016(31):977-984.
    [10]高运明,李慈颖,李亚伟,等.高炉钛渣碳氮化实验研究[J].安徽工业大学学报(自然科学版),2008(1):1-4.
    [11]He L X.Application of High Ti-bearing Blast Furnace Slag in Field of Building Materials[J].Innovative Materials:Engineering and Applications,2014,(1052):392-395.
    [12]王爱平,赵磊,汪胜东,等.含钛炉渣综合利用技术研究进展[J].中国资源综合利用,2014,32(10):32-34.
    [13]陆平.攀钢高炉渣综合利用产业化研究进展及前景分析[J].钢铁钒钛,2013,34(3):33-38.
    [14]黄丹.钒钛磁铁矿综合利用新流程及其比较研究[D].长沙:中南大学,2012.
    [15]高本恒,王化军,曲媛,等.印尼某海滨砂矿精矿直接还原-磨矿-磁选提铁试验研究[J].矿冶工程,2012,32(5):44-46+53.
    [16]高恩霞.海滨钛磁铁矿直接还原-磁选钛铁分离及机理研究[D].北京:北京科技大学,2016.
    [17]韩元庭.基于热压块的钒钛磁铁矿还原-磁选分离[D].沈阳:东北大学,2013.
    [18]朱德庆,姜涛,郭宇峰,等.钒钛磁铁精矿铁钒钛综合利用新流程[J].矿产综合利用,1999(2):17-21.
    [19]Saikat Samanta,Manik Chandra Goswami,Tapan Kumar Baidya,et al.Mineralogy and carbothermal reduction behaviour of vanadiμm-bearing titaniferous magnetite ore in Eastern India[J].International Journal of Minerals,Metallurgy,and Materials,2013,20(10):917-924.
    [20]Jena M S,Tripathy H K,Mohanty J K,et al.Roasting Followed by Magnetic Separation:A Process for Beneficiation of Titano-Magnetite Ore.Separation Science and Technology,2015,50(8):1221-1229.
    [21]汪云华,彭金辉,杨卜,等.钒钛磁铁矿制备还原铁粉的碳还原过程的实验研究[J].南方金属,2005(5):26-27+30.
    [22]Chen S,Chu M.Metalizing reduction and magnetic separation of vanadiμm titano-magnetite based on hot briquetting[J].International Journal of Minerals,Metallurgy,and Materials,2014,21(3):225-233.
    [23]Wang M Y,Zhou S F,Wang X W,et al.Recovery of Iron from Chromium Vanadium-Bearing Titanomagnetite Concentrate by Direct Reduction[J].JOM,2016,68(10):2698-2703.
    [24]Zhao L S,Wang L N,Chen D S,et al.Behaviors of vanadium and chromium in coal-based direct reduction of high-chromium vanadium-bearing titanomagnetite concentrates followed by magnetic separation[J].Transactions of Nonferrous Metals Society of China,2015,25(4):1325-1333.
    [25]Geng C,Sun T,Yang H,et al.Effect of Na2SO4on the Embedding Direct Reduction of Beach Titanomagnetite and the Separation of Titanium and Iron by Magnetic Separation[J].ISIJ International,2015,55(12):2543-2549.
    [26]储满生,唐珏,柳政根,等.高铬型钒钛磁铁矿综合利用现状及进展[J].钢铁研究学报,2017,29(5):335-344.
    [27]刘淑清.南非海威尔德钢钒公司[J].钢铁钒钛,2000(3):43.
    [28]廖世明,柏谈论.国外钒冶金[M].北京:冶金工业出版社,1985.
    [29]Moskalyk R R,Alfantazi A M.Processing of vanadium:a review[J].Minerals Engineering,2003,16(9):793-805.
    [30]Hukkanen E,Walden H.The production of vanadium and steel from titanomagnetites[J].International Journal of Mineral Processing,1985,15(1-2):89-102.
    [31]陈旻.我国炼钢机械工艺的优缺点及发展方向[J].山东工业技术,2018(17):32.
    [32]Sun H Y,Wang J S,Dong X J,et al.A Literature Review of Titanium Slag Metallurgical Processes[J].Metalurgia International,2012,17(7):49-56.
    [33]Lin X L,Peng Z W,Yan J X,et al.Pyrometallurgical recycling of electric arc furnace dust[J].Journal of Cleaner Production,2017,(149):1079-1100.
    [34]庞文杰,曾子高,刘卫平,等.国外电弧炉烟尘处理技术现状及发展[J].矿冶工程,2004(4):41-43+46.
    [35]郭汉杰,孙贯永.非焦煤炼铁工艺及装备的未来(2)-气基直接还原炼铁工艺及装备的前景研究(上)[J].冶金设备,2015(3):1-13.
    [36]王兴兵.短流程铸造工艺改进节能效果的探讨[J].山西冶金,2014,37(2):94-95.
    [37]Steinberg W S,Geyser W,Nell J.The history and development of the pyrometallurgical processes at Evraz Highveld Steel&Vanadium[J].Journal of the Southern African Institute of Mining and Metallurgy,2011,111(10):705-710.
    [38]周传典.钒钛铁矿冶炼试验研究[J].鞍钢技术,2004(2):1-3.
    [39]朱德庆,姜涛,郭宇峰,等.钒钛磁铁精矿铁钒钛综合利用新流程[J].矿产综合利用,1999(2):17-21.
    [40]高建军,洪陆阔,张俊,等.钒钛磁铁矿全氧熔池熔炼试验研究[J].钢铁钒钛,2018,39(2):8-13.
    [41]徐义新.攀枝花钒钛金属化球团熔化分离工艺的探讨[J].钢铁技术,2000(4):8-12.
    [42]郭新春.钒钛磁铁矿的利用现状及其使用价值[J].攀枝花科技,1996(2):14-18.
    [43]高文星,董凌燕,陈登福,等.煤基直接还原及转底炉工艺的发展现状[J].矿冶,2008(2):68-73.
    [44]Wei R,Lun Z,Lv X,et al.Improvement of the Energy Utilization Efficiency of the V-Ti-Magnetite Reduction Process with Rotary Hearth Furnace[J].Journal of Mining and Metallurgy Section B-Metallurgy,2015,51(1):1-6.
    [45]刘功国.基于转底炉直接还原工艺的钒钛磁铁矿综合利用试验研究[J].钢铁研究,2012,40(2):4-7.
    [46]Zhang Z H,Kong W M,Zhao F C,et al.The production and utilization of two smelting processes for V-Ti magnetite[J].Chemical,Material and Metallurgical Engineering Iii,2014,Pts 1-3,(881-883):1297-1300.
    [47]Mishra S,Roy G G.Reduction Behaviour of Iron Ore-Coal Composite Pellets in Rotary Hearth Furnace(RHF):Effect of Pellet Shape,Size,and Bed Packing Material[J].Transactions of the Indian Institute of Metals,2017,70(4):967-978.
    [48]秦洁,刘功国,李占军,等.直接还原处理钒钛矿资源的几种典型工艺评述[J].矿冶,2014,23(4):79-82+91.
    [49]张福明,曹朝真,徐辉.气基竖炉直接还原技术的发展现状与展望[J].钢铁,2014,49(3):1-10.
    [50]Hu J G.Development of Gas-Based Shaft Furnace Direct Reduction Technology[J].Journal of Iron and Steel Research International,2009(16):1288-1291.
    [51]陈宏.HYLⅢ海绵铁生产技术[J].钢铁,1999(11):64-67.
    [52]张奔,赵志龙,郭豪,等.气基竖炉直接还原炼铁技术的发展[J].钢铁研究,2016,44(5):59-62.
    [53]Wei G,Shen F M,Shen Y S,et al.Development of noncoke ironmaking processes in China[J].Steel Research International,2005,76(10):683-685.
    [54]Lungen H B,Knop K,Steffen R.State of the art of the direct reduction and smelting reduction processes[J].Stahl Und Eisen,2006,126(7):25.
    [55]周渝生,钱晖,齐渊洪,等.煤制气生产直接还原铁的联合工艺方案[J].钢铁,2012,47(11):27-31+35.
    [56]Kolbeinsen L.Modelling of DRI Processes with Two Simultaneously Active Reducing Gases[J].Steel Research International,2010,81(10):819-828.
    [57]钱晖,周渝生.HYL-Ⅲ直接还原技术[J].世界钢铁,2005,5(1):16-21.
    [58]Sui Y L,Guo Y F,Jiang T,et al.Reduction kinetics of oxidized vanadium titano-magnetite pellets using carbon monoxide and hydrogen[J].Journal of Alloys and Compounds,2017(706):546-553.
    [59]韩子文.钒钛磁铁矿气基竖炉直接还原-电炉熔分新工艺的实验研究[D].沈阳:东北大学,2011.
    [60]王帅,郭宇峰,姜涛,陈凤,郑富强.钒钛磁铁矿综合利用现状及工业化发展方向[J].中国冶金,2016,26(10):40-44.
    [61]张鹏.印尼钒钛磁铁矿砂矿气基还原基础工艺研究[D].沈阳:东北大学,2014.
    [62]吕超.攀枝花钒钛磁铁矿精矿制备中钛渣的技术和理论研究[D].昆明:昆明理工大学,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700