β-环糊精-氧化石墨烯超分子杂化体的构筑及应用进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in preparation and application of β-cyclodextrin-graphene oxide supramolecular hybrid
  • 作者:夏道宏 ; 段尊斌 ; 胡尊龙 ; 丁雪春 ; 朱丽君 ; 项玉芝
  • 英文作者:XIA Daohong;DUAN Zunbin;HU Zunlong;DING Xunchun;ZHU Lijun;XIANG Yuzhi;State Key Laboratory of Heavy Oil Processing,College of Chemical Engineering,China University of Petroleum (East China);
  • 关键词:β-环糊精 ; 氧化石墨烯 ; 超分子杂化体 ; 分子识别 ; 水污染处理 ; 电化学 ; 药物 ; 催化
  • 英文关键词:β-cyclodextrin;;graphene oxide;;supramolecular hybrid;;molecular recognition;;water pollution treatment;;electrochemistry;;pharmaceuticals;;catalysis
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:中国石油大学(华东)化学工程学院重质油国家重点实验室;
  • 出版日期:2019-04-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.331
  • 基金:国家自然科学基金(21376265);; 中国石油大学(华东)自主创新科研计划研究生创新基金(17CX06023)
  • 语种:中文;
  • 页:HGJZ201904026
  • 页数:10
  • CN:04
  • ISSN:11-1954/TQ
  • 分类号:234-243
摘要
β-环糊精是由7个D-吡喃葡萄糖单元通过α-1,4-糖苷键键连成环的超分子主体分子,"内疏水、外亲水"的独特结构赋予了其优异的分子识别能力;氧化石墨烯类材料凭借其优良特性成为近几年的研究热点。由β-环糊精和氧化石墨烯构筑的超分子杂化体在兼具二者特有性能的基础上又有新功能的引入。本文综述了β-环糊精-氧化石墨烯超分子杂化体的构筑方式,按二者间的连接方式,分别为共价键和非共价键两种连接方式,其中通过共价键连接是目前最主要的构筑方式;此外对β-环糊精-氧化石墨烯超分子杂化体的特征和表征进行了简述。同时对β-环糊精-氧化石墨烯超分子杂化体在水污染处理、电化学检测、药物控释和催化等领域的应用进展进行了综述。最后对该超分子杂化体在构筑和应用上的发展趋势进行了展望。
        β-Cyclodextrin is a supramolecular host molecule in which seven D-glucopyranose units are bonded to each other via an α-1,4-glycosidic bond and has an excellent molecular recognition ability because of its unique structure of hydrophilic external cavity and hydrophobic internal cavity. Graphene oxide-based materials are a research hotspot in recent years due to their excellent properties. The supramolecular hybrid consisted of β-cyclodextrin and graphene oxide has the unique properties of the two and the new functions. The preparation method of β-cyclodextrin-graphene oxide supramolecular hybrid was reviewed. There were two kinds of connection methods with the covalent bond and noncovalent bond according to the connection mode, of which the covalent bond connection was the important method to prepare the β-cyclodextrin-graphene oxide supramolecular hybrid for the present. The characteristics and characterization of β-cyclodextrin-graphene oxide supramolecular hybrid were briefly described. Meanwhile, the applications of β-cyclodextrin-graphene oxide supramolecular hybrid in water pollution treatment, electrochemical detection, pharmaceuticals controlled release and catalysis were reviewed, respectively. Finally, the development directions of this supramolecular hybrid in preparation and application were prospected.
引文
[1] DONG S, LUO Y, YAN X, et al. A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition[J].Angewandte Chemie International Edition, 2011, 50(8):1905-1909.
    [2] ALSBAIEE A, SMITH B J, XIAO L, et al.Rapid removal of organic micropollutants from water by a porousβ-cyclodextrin polymer[J].Nature, 2015, 529(7585):190-194.
    [3] XIAO L, LING Y, ALSBAIEE A, et al.β-Cyclodextrin polymer network sequesters perfluorooctanoic acid at environmentally relevant concentrations[J]. Journal of the American Chemical Society, 2017, 139(23):7689-7692.
    [4] HUJ,LIUS.Engineeringresponsivepolymerbuildingblockswithhostguest molecular recognition for functional applications[J]. Accounts of Chemical Research, 2014, 47(7):2084-2095.
    [5] YIN Z, WU Z, LIN F, et al. A supramolecular bottlebrush polymer assembled on the basis of cucurbit[8] uril-encapsulation-enhanced donor-acceptor interaction[J]. Chinese Chemical Letters, 2017, 28(6):1167-1171.
    [6] QI Z, SCHALLEY C A. Exploring macrocycles in functional supramolecular gels:from stimuli responsiveness to systems chemistry[J]. Accounts of Chemical Research, 2014, 47(7):2222-2233.
    [7] HARADA A, TAKASHIMA Y, YAMAGUCHI H. Cyclodextrin-based supramolecular polymers[J]. Chemical Society Reviews, 2009, 38(4):875-882.
    [8] GUO Y, GUO S, REN J, et al. Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability:synthesis and host-guest inclusion for enhanced electrochemical performance[J].ACS Nano, 2010, 4(7):4001-4010.
    [9] ZHANG W, LIN M, WANG M, et al. Magnetic porousβ-cyclodextrin polymer for magnetic solid-phase extraction of microcystins from environmental water samples[J]. Journal of Chromatography A, 2017,1503:1-11.
    [10] CHALASANI R, VASUDEVAN S. Cyclodextrin-functionalized Fe3O4@TiO2:reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies[J].ACS Nano, 2013, 7(5):4093-4104.
    [11] BARUAH U, GOGOI N, MAJUMDAR G, et al.β-Cyclodextrin and calix[4]arene-25,26,27,28-tetrol capped carbon dots for selective and sensitive detection of fluoride[J]. Carbohydrate Polymers, 2015, 117:377-383.
    [12] WAYU M B, DIPASQUALE L T, SCHWARZMANN M A, et al.Electropolymerization ofβ-cyclodextrin onto multi-walled carbon nanotube composite films for enhanced selective detection of uric acid[J]. Journal of Electroanalytical Chemistry, 2016, 783:192-200.
    [13] GEIM A K. Graphene:status and prospects[J]. Science, 2009, 324(5934):1530-1534.
    [14]孙涛,李建业,郝爱友.环糊精-石墨烯超分子体系[J].有机化学,2012(11):2054-2062.SUN T, LI J Y, HAO A Y. Cyclodextrin-graphene supramolecular system[J]. Chinese Journal of Organic Chemistry, 2012(11):2054-2062.
    [15] TAN J, MENG N, FAN Y, et al. Hydroxypropyl-β-cyclodextringraphene oxide conjugates:carriers for anti-cancer drugs[J]. Materials Science and Engineering:C, 2016, 61:681-687.
    [16] XU C, WANG J, WAN L, et al. Microwave-assisted covalent modificationofgraphenenanosheetswithhydroxypropyl-β-cyclodextrin and its electrochemical detection of phenolic organic pollutants[J].Journal of Materials Chemistry, 2011, 21(28):10463-10471.
    [17] WU H, PENG J, WANG S, et al. Fabrication of graphene oxide-β-cyclodextrin nanoparticle releasing doxorubicin and topotecan for combination chemotherapy[J]. Materials Technology, 2015, 30(5):242-249.
    [18] YAN J, LI X, QIU F, et al. Synthesis of beta-cyclodextrin-chitosangraphene oxide composite and its application for adsorption of manganese ion(Ⅱ)[J]. Materials Technology, 2016, 31(7):406-415.
    [19] HOUX,LUX,NIUP,etal.β-Cyclodextrin-modifiedthree-dimensional graphene oxide-wrapped melamine foam for the solid-phase extraction of flavonoids[J]. Journal of Separation Science, 2018, 41(10):2207-2213.
    [20] YU Z, CHEN Q, LV L, et al. Attachedβ-cyclodextrin/γ-(2, 3-epoxypropoxy)propyl trimethoxysilane to graphene oxide and its application in copper removal[J]. Water Science and Technology,2017, 75(10):2403-2411.
    [21] MOURYA V K, INAMDAR N N. Chitosan-modifications and applications:opportunities galore[J]. Reactive and Functional Polymers, 2008, 68(6):1013-1051.
    [22] CROFT A P, BARTSCH R A. Synthesis of chemically modified cyclodextrins[J]. Tetrahedron, 1983, 39(9):1417-1474.
    [23] KHAN A R, FORGO P, STINE K J, et al. Methods for selective modifications of cyclodextrins[J]. Chemical Reviews, 1998, 98(5):1977-1996.
    [24] LIY,GAOY,LIY,etal.Anovelfluorescenceprobingstrategybasedon mono-[6-(2-aminoethylamino)-6-deoxy]-β-cyclodextinfunctionalized graphene oxide for the detection of amantadine[J]. Sensors and Actuators B:Chemical, 2014, 202:323-329.
    [25] YANG L, ZHAO H, LI Y, et al. Electrochemical simultaneous determination of hydroquinone and p-nitrophenol based on host-guest molecular recognition capability of dualβ-cyclodextrin functionalized Au@graphene nanohybrids[J]. Sensors and Actuators B:Chemical,2015, 207:1-8.
    [26] XU C, WANG X, WANG J, et al. Synthesis and photoelectrical properties ofβ-cyclodextrin functionalized graphene materials with high bio-recognition capability[J]. Chemical Physics Letters, 2010, 498(1-3):162-167.
    [27] SEDGHI R, HEIDARI B, YASSARI M. Novel molecularly imprinted polymer based onβ-cyclodextrin@graphene oxide:synthesis and application for selective diphenylamine determination[J]. Journal of Colloid and Interface Science, 2017, 503:47-56.
    [28] WANG S, LI Y, FAN X, et al.β-cyclodextrin functionalized graphene oxide:an efficient and recyclable adsorbent for the removal of dye pollutants[J]. Frontiers of Chemical Science and Engineering, 2015, 9(1):77-83.
    [29] YUAN J, QIU F, LI P. Synthesis and characterization ofβ-cyclodextrin-carboxymethyl cellulose-graphene oxide composite materials and its application for removal of basic fuchsin[J]. Journal of the Iranian Chemical Society, 2017, 14(9):1827-1837.
    [30] ZHONG Y, HE Y, GE Y, et al.β-Cyclodextrin protected Cu nanoclusters as a novel fluorescence sensor for graphene oxide in environmental water samples[J]. Luminescence, 2017, 32(4):596-601.
    [31] OGOSHI T, ICHIHARA Y, YAMAGISHI T, et al. Supramolecular polymer networks from hybrid between graphene oxide and per-6-amino-β-cyclodextrin[J]. Chemical Communications, 2010, 46(33):6087-6089.
    [32] TAN L, WANG G, CHEN N, et al. Layer-by-layer assembled multilayers of graphene/mono-(6-amino-6-deoxy)-β-cyclodextrin for detection of dopamine[J]. Chinese Journal of Chemistry, 2015, 33(2):185-191.
    [33] ZHU G, ZHANG X, GAI P, et al. Enhanced electrochemical sensing for persistent organic pollutants by nanohybrids of graphene nanosheets that are noncovalently functionalized with cyclodextrin[J].ChemPlusChem, 2012, 77(9):844-849.
    [34] YANG Y, ZHANG Y, CHEN Y, et al. Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery[J]. Chemistry—A European Journal, 2012, 18(14):4208-4215.
    [35] WU Y, QI H, SHI C, et al. Preparation and adsorption behaviors of sodium alginate-based adsorbent-immobilized beta-cyclodextrin and graphene oxide[J]. RSC Advances, 2017, 7(50):31549-31557.
    [36] LIU Y, HUANG S, ZHAO X, et al. Fabrication of three-dimensional porousβ-cyclodextrin/chitosan functionalized graphene oxide hydrogel for methylene blue removal from aqueous solution[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 539:1-10.
    [37] FAN L, LUO C, SUN M, et al. Synthesis of magneticβ-cyclodextrinchitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal[J]. Colloids and Surfaces B:Biointerfaces,2013, 103:601-607.
    [38] LI L, FAN L, DUAN H, et al. Magnetically separable functionalized graphene oxide decorated with magnetic cyclodextrin as an excellent adsorbent for dye removal[J]. RSC Advances, 2014, 4(70):37114-37121.
    [39] CAO X T, SHOWKAT A M, KANG I, et al.β-Cyclodextrin multiconjugated magnetic graphene oxide as a nano-adsorbent for methylene blue removal[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(2):1521-1525.
    [40] FAN L, LUO C, SUN M, et al. Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal[J]. Journal of Materials Chemistry, 2012, 22(47):24577-24583.
    [41] LI L, FAN L, SUN M, et al. Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan[J].Colloids and Surfaces B:Biointerfaces, 2013, 107:76-83.
    [42] WANG H, LIU Y G, ZENG G M, et al. Grafting of beta-cyclodextrin to magnetic graphene oxide via ethylenediamine and application for Cr(Ⅵ)removal[J]. Carbohydrate Polymers, 2014, 113:166-173.
    [43] LIUY,LIM,HEC.RemovalofCr(Ⅵ)andHg(Ⅱ)ionsfromwastewater by novelβ-CD/MGO-SO3H composite[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 512:129-136.
    [44] HU X, LIU Y, WANG H, et al. Adsorption of copper by magnetic graphene oxide-supportedβ-cyclodextrin:effects of pH, ionic strength,background electrolytes, and citric acid[J]. Chemical Engineering Research and Design, 2015, 93:675-683.
    [45] CUIL,WANGY,GAOL,etal.RemovalofHg(Ⅱ)fromaqueoussolution by resin loaded magneticβ-cyclodextrin bead and graphene oxide sheet:synthesis, adsorption mechanism and separation properties[J].Journal of Colloid and Interface Science, 2015, 456:42-49.
    [46] SONG W, HU J, ZHAO Y, et al. Efficient removal of cobalt from aqueous solution using beta-cyclodextrin modified graphene oxide[J].RSC Advances, 2013, 3(24):9514-9521.
    [47] SONG W, SHAO D, LU S, et al. Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets[J].Science China Chemistry, 2014, 57(9):1291-1299.
    [48] KUMAR A S K, JIANG S. Synthesis of magnetically separable and recyclable magnetic nanoparticles decorated with beta-cyclodextrin functionalized graphene oxide an excellent adsorption of As(Ⅴ)/(Ⅲ)[J]. Journal of Molecular Liquids, 2017, 237:387-401.
    [49] ZHU G, YI Y, CHEN J. Recent advances for cyclodextrin-based materials in electrochemical sensing[J]. TrAC Trends in Analytical Chemistry, 2016, 80:232-241.
    [50] LIU J, CHEN Y, GUO Y, et al. Electrochemical sensor for o-nitrophenol based onβ-cyclodextrin functionalized graphene nanosheets[J]. Journal of Nanomaterials, 2013. DOI:10.1155/2013/632809.
    [51] LIU W, LI C, GU Y, et al. One-step synthesis of beta-cyclodextrin functionalized graphene/Ag nanocomposite and its application in sensitive determination of 4-nitrophenol[J]. Electroanalysis, 2013, 25(10):2367-2376.
    [52] FENG W, LIU C, LU S, et al. Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified withβ-cyclodextrin and graphene[J]. Microchimica Acta, 2014, 181(5/6):501-509.
    [53] WANG C, LI T, LIU Z, et al. An ultra-sensitive sensor based onβ-cyclodextrin modified magnetic graphene oxide for detection of tryptophan[J]. Journal of Electroanalytical Chemistry, 2016, 781:363-370.
    [54] XU J, WANG Q, XUAN C, et al. Chiral recognition of tryptophan enantiomers based onβ-cyclodextrin-platinum nanoparticles/graphene nanohybrids modified electrode[J]. Electroanalysis, 2016, 28(4):868-873.
    [55] GUO Y, GUO S, REN J, et al. Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability:synthesis and host-guest inclusion for enhanced electrochemical performance[J].ACS Nano, 2010, 4(7):4001-4010.
    [56] PUTTA C, SHARAVATH V, SARKAR S, et al. Palladium nanoparticles onβ-cyclodextrin functionalised graphene nanosheets:a supramolecular based heterogeneous catalyst for C—C coupling reactions under green reaction conditions[J]. RSC Advances, 2015, 5(9):6652-6660.
    [57] LI Z, ZHANG L, HUANG X, et al. Shape-controlled synthesis of Pt nanoparticles via integration of graphene andβ-cyclodextrin and using as a noval electrocatalyst for methanol oxidation[J]. Electrochimica Acta, 2014, 121:215-222.
    [58] RAN X, YANG L, QU Q, et al. Synthesis of well-dispersive 2.0 nm Pd-Pt bimetallic nanoclusters supported onβ-cyclodextrin functionalized graphene with excellent electrocatalytic activity[J]. RSC Advances, 2017, 7(4):1947-1955.
    [59] YEE E M H, HOOK J M, BHADBHADE M M, et al. Preparation,characterization and in vitro biological evaluation of(1:2)phenoxodiolbeta-cyclodextrin complex[J]. Carbohydrate Polymers, 2017, 165:444-454.
    [60] SZEJTLI J. Introduction and general overview of cyclodextrin chemistry[J]. Chemical Reviews, 1998, 98(5):1743-1754.
    [61] ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Materials, 2010,22(35):3906-3924.
    [62] XIAO Y, FAN Y, WANG W, et al. Novel GO-COO-beta-CD/CA inclusion:its blood compatibility, antibacterial property and drug delivery[J]. Drug Delivery, 2014, 21(5):362-369.
    [63] WANG C, LI B, NIU W, et al.β-Cyclodextrin modified graphene oxide-magnetic nanocomposite for targeted delivery and pH-sensitive release of stereoisomeric anti-cancer drugs[J]. RSC Advances, 2015, 5(108):89299-89308.
    [64] MENG N, SU Y, ZHOU N, et al. Carboxylated graphene oxide functionalized withβ-cyclodextrin-engineering of a novel nanohybrid drug carrier[J]. International Journal of Biological Macromolecules,2016, 93:117-122.
    [65] SIRIVIRIYANUN A, TSAI Y, VOON S H, et al. Cyclodextrin-and dendrimer-conjugated graphene oxide as a nanocarrier for the delivery of selected chemotherapeutic and photosensitizing agents[J]. Materials Science and Engineering C, 2018, 89:307-315.
    [66] GAO Y, JIAO T, MA K, et al. Variable self-assembly and in situ hostguest reaction of beta-cyclodextrin-modified graphene oxide composite Langmuir films with azobenzene compounds[J]. RSC Advances, 2017, 7(65):41043-41051.
    [67] DONGH,LIY,YUJ,etal.Aversatilemulticomponentassembly viaβ-cyclodextrin host-guest chemistry on graphene for biomedical applications[J]. Small, 2013, 9(3):446-456.
    [68] HOU X, WANG L, TANG X, et al. Application of a beta-cyclodextrin/graphene oxide-modified fiber for solid-phase microextraction of six fragrance allergens in personal products[J]. Analyst, 2015, 140(19):6727-6735.
    [69] LIANG R, LIU C, MENG X, et al. A novel open-tubular capillary electrochromatography usingβ-cyclodextrin functionalized graphene oxide-magnetic nanocomposites as tunable stationary phase[J]. Journal of Chromatography A, 2012, 1266:95-102.
    [70] HOU X, LU X, NIU P, et al.β-Cyclodextrin-modified threedimensional graphene oxide-wrapped melamine foam for the solidphase extraction of flavonoids[J]. Journal of Separation Science, 2018,41(10):2207-2213.
    [71]张树鹏,宋海欧.氧化石墨烯/β-环糊精超分子杂化体的制备及表征[J].无机材料学报, 2012, 27(6):596-602.ZHANG S P, SONG H O. Preparation and characterization of graphene oxide/β-cyclodextrin supramolecular hybrid material[J]. Journal of Inorganic Materials, 2012, 27(6):596-602.
    [72]沈海民,武宏科,纪红兵,等.β-环糊精-Fe3O4超分子体系的构筑及其应用研究进展[J].有机化学, 2014, 34(4):630-646.SHEN H M, WU H K, JI H B, et al. Progress in the construction ofβ-cyclodextrin-Fe3O4supramolecular systems and their application[J].Chinese Journal of Organic Chemistry, 2014, 34(4):630-646.
    [73] SUN Y, XIA D, XIANG Y. A novel method for removing sulfur compounds from light oil by molecular recognition with betacyclodextrin[J]. Petroleum Science and Technology, 2008, 26(17):2023-2032.
    [74] LI L, DUAN Z, CHEN J, et al. Molecular recognition with cyclodextrin polymer:a novel method for removing sulfides efficiently[J]. RSC Advances, 2017, 7(62):38902-38910.
    [75]夏道宏,段尊斌,卜婷婷,等.一种基于超分子包合作用的轻质油品脱硫剂及其使用方法:CN105126768A[P]. 2015-12-09.XIA D H, DUAN Z B, BU T T, et al. Light oil desulfurization agent based on supramolecular inclusion and its using method:CN105126768A[P]. 2015-12-09.
    [76]夏道宏,卜婷婷,段尊斌,等.一种利用超分子包合作用的燃料油品脱氮剂及其使用方法:CN105087050A[P]. 2015-11-25.XIA D H, BU T T, DUAN Z B, et al. Fuel oil denitrification agent utilizing supramolecular inclusion and its using method:CN105087050A[P]. 2015-11-25.
    [77] DUAN Z, BU T, BIAN H, et al. Effective removal of phenylamine,quinoline, and indole from light oil byβ-cyclodextrin aqueous solution through molecular inclusion[J]. Energy&fuels, 2018, 32(9):9280-9288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700