2μm波段硫系玻璃微球激光器的制备和表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fabrication and characterization of chalcogenide glass microsphere lasers operating at 2μm
  • 作者:胡博 ; 吴越豪 ; 郑雨璐 ; 戴世勋
  • 英文作者:Hu Bo;Wu Yue-Hao;Zheng Yu-Lu;Dai Shi-Xun;Advanced Technology Research Institute, Laboratory of Infrared Materials and Devices, Ningbo University;Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province;
  • 关键词:硫系玻璃 ; 中红外激光 ; 微球激光
  • 英文关键词:chalcogenide glass;;mid-infrared laser;;microsphere laser
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:宁波大学高等技术研究院红外材料及器件实验室;浙江省光电探测材料及器件重点实验室;
  • 出版日期:2019-03-11 17:09
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学青年科学基金(批准号:61605094);; 国家自然科学基金重点项目(批准号:61435009);; 宁波大学王宽诚幸福基金资助的课题~~
  • 语种:中文;
  • 页:WLXB201906018
  • 页数:6
  • CN:06
  • ISSN:11-1958/O4
  • 分类号:143-148
摘要
工作在2μm波段附近的中红外微球激光器在生物医学传感、激光雷达、窄带光学滤波和空气污染监控等领域具有重要的应用价值.本文以自制的Tm~(3+)-Ho~(3+)共掺的Ge-Ga-Sb-S (2S2G)硫系玻璃为基质材料,采用玻璃粉末高温漂浮熔融法批量制备了高品质(典型品质因数大于10~5)硫系玻璃微球.优选一颗直径为205.82μm的微球为实验对象,利用光纤锥耦合法对其进行光学近场耦合实验.在808 nm抽运光的作用下,在1.8—2.1μm波段处可观测到明显的荧光回廊模现象.当抽运功率达到0.848 mW的阈值时,可在2080 nm附近观测到明显的激光输出.上述实验结果表明本文采用的2S2G硫系玻璃具有用于制备工作在中远红外波段的有源光学/光电子学器件的潜力.
        Microsphere lasers operating at the 2 μm band have important applications in the fields of bio-medical sensing, laser radars, narrow line width optical filtering, and air-pollution monitoring. In this work, we utilize a novel type of chalcogenide glass, whose composition is Ge-Ga-Sb-S or 2 S2 G, to fabricate microsphere lasers.Compared with chalcogenide glasses used in previous microsphere lasers, this 2 S2 G glass is environmentally friendly. It also has a lower melting temperature and a higher characterization temperature, implying that 2 S2 G microspheres can be fabricated at lower temperatures and the crystallization problem happening in the sphereforming process can be mitigated. A Tm~(3+)-Ho~(3+) co-doping scheme is applied to the 2 S2 G glass, so that fluorescence light at ~2 μm can be obtained from the bulk glass. Owing to the superior properties of the 2 S2 G glass, we can utilize a droplet method to mass-produce hundreds of high-quality 2 S2 S microspheres in one experimental run. The diameters of microspheres fabricated in this work fall in a range of 50-250 μm and typical quality factors(Q factor) of microspheres are higher than 10~5. As a representative example, we characterize the optical properties of a 205.82 μm diameter 2 S2 G microsphere. This microsphere is placed in contact with a silica fiber taper, so that the pump light can be evanescently introduced into the microsphere and the fluorescence light can be evanescently collected from the microsphere. A commercial laser diode(808 nm)is used as a pump source and an optical spectral analyzer is used to measure the transmission spectra of the microsphere/fiber taper coupling system. Apparent whispering gallery mode patterns in the ~2 μm band can be noted in the transmission spectra of the coupling system. When the pump power increases beyond a threshold of 0.848 mW, a lasing peak at 2080.54 nm can be obtained from the coupling system. Experimental results presented in this work show that this 2 S2 G chalcogenide glass is a promising base material for fabricating various active optical/photonic devices in the middle-wavelength and long-wavelength infrared spectra.
引文
[1] Kippenberg T J, Spillane S M, Vahala K J 2004 Phys. Rev.Lett. 93 083904
    [2] Cai M, Painter O, Vahala K J 2000 Phys. Rev. Lett. 85 74
    [3] Sandoghdar V, Treussart F, Hare J, Lefevre-Seguin V,Raimond J, Haroche S 1996 Phys. Rev. A 54 R1777
    [4] Murugan G S, Zervas M N, Panitchob Y, Wilkinson J S 2011Opt. Lett. 36 73
    [5] Huang Y T, Peng L X, Zhuang S J, Li Q L, Liao Y D, Xu C H, Duan Y F 2017 Acta Phys. Sin. 66 244208(in Chinese)[黄衍堂,彭隆祥,庄世坚,李强龙,廖廷俤,许灿华,段亚凡2017物理学报66 244208]
    [6] Collot L, Lefevre-sequin V, Brune M, Raimond J M, Haroche S 1993 Europhys. Lett. 23 327
    [7] Wu T J, Huang Y T, Ma J, Huang J, Huang Y, Zhang P J,Guo C L 2014 Acta Phys.Sin. 63 217805(in Chinese)[吴天娇,黄衍堂,马靖,黄婧,黄玉,张培进,郭长磊2014物理学报63 217805]
    [8] Ilchenko V S, Yao X S, Maleki L 2000 Proceedings of the Conference on Lasers and Electro-Optics(CLEO 2000)San Francisco, USA, May 7-12, 2000 CFH4
    [9] Peng X, Song F, Jiang S, Peyghambarian N, Kuwatagonokami M, Xu L 2003 Appl. Phys. Lett. 83 5380
    [10] Elliott G R, Murugan G S, Wilkinson J S, Zervas M N,Hewak D W 2010 Opt. Expr. 18 26720
    [11] Eggleton B J, Luther-Davies B, Richardson K 2011 Nat.Photon. 5 141
    [12] Zakery A, Elliott S R 2003 J. Non-Cryst. Solids 330 1
    [13] Seddon A B 1995 J. Non-Cryst. Solids 184 44
    [14] Vanier F, Rochette M, Godbout M, Peter Y A 2013 Opt.Lett. 38 4966
    [15] Li C, Dai S, Zhang Q, Shen X, Wang X, Zhang P, Lu L, Wu Y, Lv S 2015 Chin. Phys. B 24 044208
    [16] Zhang X D, Wu Y H, Yang Z S, Dai S X, Zhang P Q, Zhang W, Xu T F, Zhang Q Y 2016 Acta Phys. Sin. 65 144205(in Chinese)[张兴迪,吴越豪,杨正胜,戴世勋,张培晴,张巍,徐铁锋,张勤远2016物理学报65 144205]
    [17] Liu J, Shi H, Liu K, Hou Y, Wang P 2014 Opt. Expr. 2213572
    [18] Moulton P F, Rines G A, Slobodtchikov V, Wall K F, Frith G, Samson B, Adrian L G 2009 IEEE J. Sel, Top. Quant. 1585
    [19] Tao M, Feng G, Yu T, Wang Z, Shen Y, Ye X 2016 J. Russ.Laser Res. 37 395
    [20] Wang P, Lee T, Ding M, Dhar A, Hawkins T, Foy P,Semenova Y, Wu Q, Sahu J, Farrell G, Ballato J, Brambilla G 2012 Opt. Lett. 37 728e
    [21] Yang Z, Wu Y, Yang K, Xu P, Zhang W, Dai S, Xu T 2017Opt. Mat. 72 524

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700