用于高效的氧还原反应MoF衍生的Co-N-C复合材料
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:MOF-Derived Co-N-C Composite for Highly Efficient Oxygen Reduction Reaction
  • 作者:王春玲 ; 刘肖杰
  • 英文作者:WANG Chun-ling;LIU Xiao-jie;Department of Aeronautical Manufacturing Engineering,Aeronautical Polytechnic Institute;Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education) ,College of Chemistry and Materials Science,Northwest University;
  • 关键词:Co-N-C ; 氧还原反应 ; 金属有机框架 ; 稳定性
  • 英文关键词:Co-N-C composite;;oxygen reduction reaction;;metal-organic framework;;durability
  • 中文刊名:RGJT
  • 英文刊名:Journal of Synthetic Crystals
  • 机构:西安航空职业技术学院航空制造工程学院;西北大学化学与材料科学学院合成与天然功能分子化学教育部重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:人工晶体学报
  • 年:2019
  • 期:v.48;No.248
  • 基金:国家科学自然基金(21301140);; 新世纪优秀人才(NCET-13-0953);; 陕西省教育厅科研计划项目(18JK0413)
  • 语种:中文;
  • 页:RGJT201906032
  • 页数:6
  • CN:06
  • ISSN:11-2637/O7
  • 分类号:189-193+202
摘要
金属有机框架化合物及其衍生物具有优越的电性能,因为有望替代贵金属而受到广泛的关注。本文通过简单的方法制备Co-N-C复合材料,即在MOFs生长中引入Co2+,然后将其前驱体进行煅烧。Co-N-C复合材料表现出较大的比表面积和高活性点,在0. 1 KOH条件下,电化学分析Co-N-C复合材料半波电位0. 71 V。另外,Co-N-C材料在碱性环境表现出优良的稳定性和抗甲醇中毒。
        Metal-organic frameworks( MOFs) and MOF-derived materials have recently attracted considerable interest as alternatives to noble-metal electrocatalysts. Herein,Co-N-C composite with a well-defned morphology is facilely prepared by introducing Co2 +during the growth of MOF,followed by pyrolysis in this paper. The obtained Co-N-C composite with high active sites and large surface area. Electrochemical analysis shows that half-wave potential for ORR on the Co-N-C electrode was 0. 71 V in 0. 1 KOH alkaline medium. In addition,it also has excellent durability and methanol resistance ability in alkaline solutions.
引文
[1] Wang X X,Cullen D A,Pan Y T,et al. Nitrogen-Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells[J]. Advanced Materials,2018,30(11):1706758.
    [2] Haque M A,Sulong A B,Loh K S,et al. Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell:A review[J]. International Journal of Hydrogen Energy,2017,42(14):9156-9179.
    [3] Bharti A,Cheruvally G. Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance[J]. Journal of Power Sources,2017,360:196-205.
    [4] Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature,2012,486(7401):43.
    [5] Hu C,Dai L. Carbon-Based Metal-Free Catalysts for Electrocatalysis beyond the ORR[J]. Angewandte Chemie International Edition,2016,55(39):11736-11758.
    [6] Wu G,Zelenay P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction[J]. Accounts of chemical research,2013,46(8):1878-1889.
    [7] Zhu Q L,Xu Q. Metal-organic framework composites[J]. Chemical Society Reviews,2014,43(16):5468-5512.
    [8] Zhou M,Wang H L,Guo S,et al. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials[J]. Chemical Society R16,45(5):1273-1307.
    [9] You B,Jiang N,Sheng M,et al. High-performance overall water splitting electrocatalysts derived from cobalt-based metal-organic frameworks[J]. Chemistry of Materials,2015,27(22):7636-7642.
    [10] Zhou W,Lu J,Zhou K,et al. CoSe2nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction[J]. Nano Energy,2016,28,143-150.
    [11] Tang J,Salunkhe R R,Liu J,et al. Thermal conversion of core-shell metal-organic frameworks:a new method for selectively functionalized nanoporous hybrid carbon[J]. Journal of the American Chemical Society,2015,137(4):1572-1580.
    [12] Wu J,Zheng X,Jin C,et al. Ternary doping of phosphorus,nitrogen,and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction[J]. Carbon,2015,92:327-338.
    [13] Kim J G,Park M S,Hwang S M,et al. Zr4+Doping in Li4Ti5O12Anode for Lithium-Ion Batteries:Open Li+Diffusion Paths through Structural Imperfection[J]. ChemSusChem,2014,7(5):1451-1457.
    [14] Liu J,Zhu D,Guo C,et al. Design Strategies toward Advanced MOF-Derived Electrocatalysts for Energy-Conversion Reactions[J]. Advanced Energy Materials,2017,7(23):1700518.
    [15] Li X,Jiang Q,Dou S et al. ZIF-67-derived Co-NC@CoP-NC nanopolyhedra as an efficient bifunctional oxygen electrocatalyst[J]. Journal of Materials Chemistry A,2016,4(41):15836-15840.
    [16] Jing H,Song X,Ren,S,et al. ZIF-67 derived nanostructures of Co/CoO and Co@N-doped graphitic carbon as counter electrode for highly efficient dye-sensitized solar cells. Electrochimica Acta,2016,213,252-259.
    [17] Ai K,Li Z,Cui X. Scalable preparation of sized-controlled Co-N-C electrocatalyst for efficient oxygen reduction reaction[J]. Journal of Power Sources,2017,368,46-56.
    [18] Zhong H,Luo Y,He S. et al. Electrocatalytic Cobalt Nanoparticles Interacting with Nitrogen-Doped Carbon Nanotube in Situ Generated from a Metal-Organic Framework for the Oxygen Reduction Reaction[J]. ACS applied materials&interfaces,2017,9(3):2541-2549.
    [19] Zhao R,Xia W,Lin C,et al. A pore-expansion strategy to synthesize hierarchically porous carbon derived from metal-organic framework for enhanced oxygen reduction[J]. Carbon,114,284-290.
    [20] Aijaz A,Masa J,Rsler C,et al. Co@Co3O4encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode[J]. Angewandte Angewandte Chemie International Edition,2016,55(12):4087-4091.
    [21] Yusran Y,Xu D,Fang Q,et al. MOF-derived Co@NC nanocatalyst for catalytic reduction of 4-nitrophenol to 4-aminophenol[J]. Microporous and Mesoporous Materials,2017,241:346-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700