403不锈钢锻件的加热工艺
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Heating process of 403 stainless steel forging
  • 作者:朱有鑫 ; 李萌蘖 ; 卜恒勇 ; 李绍宏 ; 张自生
  • 英文作者:Zhu Youxin;Li Mengnie;Bu Hengyong;Li Shaohong;Zhang Zisheng;Faculty of Materials Science and Engineering,Kunming University of Science and Technology;Guizhou Aerospace Xinli Forging and Casting Co.;
  • 关键词:403不锈钢 ; 数值模拟 ; 热处理 ; 保温时间 ; 入炉方式
  • 英文关键词:403 stainless steel;;numerical simulation;;heat treatment;;holding time;;charging mode
  • 中文刊名:JSRC
  • 英文刊名:Heat Treatment of Metals
  • 机构:昆明理工大学材料科学与工程学院;贵州航天新力铸锻有限公司;
  • 出版日期:2019-07-25
  • 出版单位:金属热处理
  • 年:2019
  • 期:v.44;No.503
  • 基金:科技部重点研发项目(2017YFB0701804)
  • 语种:中文;
  • 页:JSRC201907007
  • 页数:6
  • CN:07
  • ISSN:11-1860/TG
  • 分类号:25-30
摘要
结合软件的二次开发,对403不锈钢锻件加热过程进行有限元数值模拟,研究结果发现:403不锈钢锻件同一位置,倒置入炉的加热温度明显高于正置入炉的加热温度,保温1. 5 h,表面同一位置的温度相差约20℃,而越靠近心部,相同位置的温度差别越小;工件正置随炉升温,淬火工艺保温时间1. 5 h不足以使锻件心部完成奥氏体化,有大量的铁素体和碳化物残留,心部的最低温度比完全奥氏体化温度760℃还约低70℃,将保温时间延长至3. 0 h,表面最高温度达到952℃,心部最低温度达到873℃,铁素体及碳化物完全转变为奥氏体;然而,当热处理炉温度达到970℃后,再把工件放入炉中加热7. 0 h,工件表面及心部温度达到964~970℃之间。在随炉加热过程中,锻件内的应力先增大后减小,入炉方式对Mises应力分布的影响较小。但工件随炉升温与热处理炉到温970℃后放入工件相比,后者的等效应力明显比前者的等效应力大,并且应力峰值出现的时间大幅度的提前。
        Finite element numerical simulation was employed on quenching heating process of 403 stainless steel forging by coupled user subroutine. Simulation results show that the temperature of upturned forging is significantly higher than the upright at the same reference position after heating same time and it is below approximately 20 ℃ at the surface of forging,but the difference is smooth with the closer to the core of forging after holding for 1. 5 h. When upright forging,the holding time of 1. 5 h is not enough to make the core of forging complete austenitization,and there are a large number of ferrite and carbide residues,and the minimum temperature of the core is below 70 ℃ than the full austenitization temperature 760 ℃. If the holding time is expanded to 3. 0 h,the highest surface temperature is 952 ℃ and the lowest core temperature is 873 ℃. The ferrite and carbide are completely transformed into austenite. However,the forging temperature of surface and core can reach between 964 ℃ and 970 ℃ after holding 7. 0 h if the furnace already have reached 970 ℃. In the process of heating with the furnace,the stress increases with the heating time and then decreases. However,compared cold furnace charging with hot furnace charging at 970 ℃,the equivalent stress of the latter is obviously larger than the equivalent stress of the former,and the time of stress peak is greatly shifted to much earlier.
引文
[1]Ru X,Staehle R W. Historical experience providing bases for predicting corrosion and stress corrosion in emerging supercritical water nuclear technology:Part 1-review[J]. Corrosion,2013,69:211-229.
    [2]刘建章.核结构材料[M].北京:化学工业版社,2007.
    [3]张立文,朱大喜,王明伟.淬火冷却介质换热系数研究进展[J].金属热处理,2008,33(1):53-56.Zhang Liwen,Zhu Daxi,Wang Mingwei. Development of research on heat-transfer coefficient for quenchant[J]. Heat Treatment of Metals,2008,33(1):53-56.
    [4]朱子宏,魏宪军. 45钢零件淬火过程中温度场的ABAQUS模拟[J].现代制造工程,2009(7):59-61.Zhu Zihong,Wei Xianjun. The ABAQUS simulation of temperature field in quenching process of 45 steel part[J]. Modern Manufacturing Engineering,2009(7):59-61.
    [5]Mackerle J. Finite element analysis and simulation of quenching and other heat treatment processes-A bibliography(1976-2001)[J].Computational Materials Science,2003,27(3):313-332.
    [6]Tamas Reti,Zoltan Fried,Imre Felde. Computer simulation of steel quenching process using a multi-phase transformation model[J].Computational Materials Science,2001,22(3/4):261-278.
    [7]陈睿凯. 30Cr2Ni4MoV钢低压转子热处理工艺的研究[D].上海:上海交通大学,2012.
    [8]许学军,陈国学,刘春成,等.钢的淬火过程的数值模拟[J].大型铸锻件,1997(2):6-10.Xu Xuejun, Chen Guoxue, Liu Chuncheng. Numerical simulation of quenching process of steel[J]. Heavy Casting and Forging,1997(2):6-10.
    [9]刘庄,吴景之,吴肇基,等.热处理过程的数值模拟[M].北京:科学出版社,1996.
    [10]杰米尔.哈坎吉尔.钢热加工数值模拟手册[M].潘健生,顾剑锋,译.北京:机械工业出版社,2016.
    [11]吴光英.现代热处理炉[M].北京:机械工业出版社,1991.
    [12]Li M Victor,David V Niebuhr, Lemmy L Meekisho, et al. A computational model for the prediction of steel hardenability[J].Metallurgical and Materials Transactions B,1998,29(3):661-672.
    [13]Piekarska W,Kubiak M,Saternus Z. Application of abaqus to analysis of the temperature field in elements heated by moving heat sources[J].Archives of Foundry Engineering,2010,4(10):177-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700