火焰喷雾热解法合成稀土复合物研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on Synthesis of Rare Earth Complexes by Flame Spray Pyrolysis
  • 作者:刘永珍 ; 李慧琴 ; 郝先库
  • 英文作者:LIU Yong-zhen;LI Hui-qin;HAO Xian-ku;School of Materials and Metallurgy,Inner Mongolia University of Science and Technology;Baotou Research Institute of Rare Earths;Baotou Jing Rui New Material Company Limited;
  • 关键词:火焰喷雾热解 ; 稀土复合物 ; 比表面积 ; 粒度
  • 英文关键词:flame spray pyrolysis;;rare earth complexes;;specific surface area;;particle size
  • 中文刊名:XTZZ
  • 英文刊名:Chinese Rare Earths
  • 机构:内蒙古科技大学材料与冶金学院;包头稀土研究院;包头市京瑞新材料有限公司;
  • 出版日期:2019-02-15
  • 出版单位:稀土
  • 年:2019
  • 期:v.40;No.240
  • 语种:中文;
  • 页:XTZZ201901042
  • 页数:11
  • CN:01
  • ISSN:15-1099/TF
  • 分类号:132-142
摘要
综述了火焰喷雾热解法合成稀土复合物条件及其产品性能和应用研究现状,阐述了不同前驱体、溶剂、火焰温度、稀土和过渡金属配比等条件对稀土复合物粒度、比表面积、相结构、热稳定性等因素的影响,重点介绍了合成稀土稳定氧化锆、稀土复合物催化剂和发光材料,以及在燃料电池电解质表面形成电极薄膜,合成了新晶相稀土复合物,并对火焰喷雾热解法合成的稀土复合物应用及未来发展前景进行了展望。
        The research status of the conditions of the synthesis of rare earth complexes by flame spray pyrolysis and the performance of their products and their applications were reviewed. The effects of the different precursors,solvents,flame temperature and ratio of rare earth to transition metal on the particle size,specific surface area,phase structure,thermal stability of rare earth complexes were detailed. The synthesis of rare earth-stabilized zirconia,the catalysts and luminescent materials of rare earth complex,as well as the formation of electrode films on the surfaces of fuel cell electrolytes,and the synthesis of new crystalline rare earth composites were especially introduced. The application of rare earth complexes synthesized by flame spray pyrolysis and its future development prospect were prospected.
引文
[1] Jung K Y,Kang Y C. Preparation of Ba MgAl10O17∶Eu blue phosphor by flame-assisted spray pyrolysis:photoluminescence properties of powder and film under VUV excitation[J]. Materials Letters,2004,58(16):2161-2165.
    [2] Chiarello G L,Rossetti I,Forni L. Flame-spray pyrolysis preparation of perovskites for methane catalytic combustion[J]. Journal of Catalysis,2005,236(2):251-261.
    [3] Giacomuzzi R A M,Portinari M,Rossetti I,et al. A new method for preparing nanometer-size perovskitic catalysts for CH4flameless combustion[J]. Studies in Surface Science and Catalysis,2000,130:197-202.
    [4] Schimmoeller B,Pratsinis S E,Baiker A. Cover picture:flame aerosol synthesis of metal oxide catalysts with unprecedented structural and catalytic properties[J].Cheminform,2011,3(8):1234-1256.
    [5]黄绍东,郝先库,张瑞祥,等.火焰喷雾热解法合成稀土氧化物[J].稀土,2017,38(6):125-136.Huang S D,Hao X K,Zhang R X,et al. Synthesis of rare earth oxides by flame spray pyrolysis[J]. Chinese Rare Earths,2017,38(6):125-136.
    [6] Jossen R,Mueller R,Pratsinis S E,et al. Morphology and composition of spray-flame-made yttria-stabilized zirconia nanoparticles.[J]. Nanotechnology,2005,16(7):S609-S617.
    [7] You H,Cho K,Yoon Y,et al. Synthesis of yttria-stabilized zirconia film by aerosol flame pyrolysis deposition[J]. Journal of Analytical and Applied Pyrolysis,2008,81(1):14-19.
    [8] Zhou X,Kong W J. Synthesis of yttria-stabilized zirconia particles by flame spray pyrolysis method[J]. Advanced Materials Research,2013,629:70-74.
    [9] Suffner J,Wang D,Kübel C,et al. Metastable phase formation during flame spray pyrolysis of Zr O2(Y2O3)-Al2O3,nanoparticles[J]. Scripta Materialia,2011,64(8):781-784.
    [10] Stark W J,Mdler L,Maciejewski M,et al. Flame synthesis of nanocrystalline ceria-zirconia:effect of carrier liquid[J]. Chemical Communications,2003,5(5):588-589.
    [11] Stark W J,Maciejewski M,Mdler L,et al. Flamemade nanocrystalline ceria/zirconia:structural properties and dynamic oxygen exchange capacity[J]. Journal of Catalysis,2003,220(1):35-43.
    [12] Sutorik A C,Baliat M S. Solid solution behavior of CexZr1-xO2nanopowders prepared by flame spray pyrolysis of solvent-borne precursors[J]. Journal of Metastable and Nanocrystalline Materials,2002,13:371-376.
    [13] Jossen R,Heine M,Pratsinis S,et al. Thermal stability of flame-made zirconia-based mixed oxides[J]. Chemical Vapor Deposition,2010,12(12):614-619.
    [14] Chaisuk C,Wehatoranawee A,Preampiyawat S,et al.Preparation and characterization of Ce O2/Ti O2,nanoparticles by flame spray pyrolysis[J]. Ceramics International,2011,37(5):1459-1463.
    [15] Kydd R,Teoh W Y,Wong K,et al. Flame-synthesized ceria-supported copper dimers for preferential oxidation of CO[J]. Advanced Functional Materials,2009,19(3):369-377.
    [16] Kydd R,Ferri D,Hug P,et al. Temperature-induced evolution of reaction sites and mechanisms during preferential oxidation of CO[J]. Journal of Catalysis,2011,277(1):64-71.
    [17] Pati R K,Lee I C,Hou S,et al. Flame synthesis of nanosized Cu-Ce-O,Ni-Ce-O,and Fe-Ce-O catalysts for the water-gas shift(WGS)reaction[J]. Acs Applied Materials and Interfaces,2009,1(11):2624-35.
    [18] Channei D,Inceesungvorn B,Wetchakun N,et al.Photocatalytic activity under visible light of Fe-doped Ce O2,nanoparticles synthesized by flame spray pyrolysis[J]. Ceramics International,2013,39(3):3129-3134.
    [19] Channei D,Inceesungvorn B,Wetchakun N,et al.Kinetics study of photocatalytic activity of flame-made unloaded and Fe-loaded Ce O2nanoparticles[J]. International Journal of Photoenergy,2013,2013(3-4):1-9.
    [20] Channei D,Phanichphant S,Nakaruk A,et al. Aqueous and surface chemistries of photocatalytic Fe-doped Ce O2nanoparticles[J]. Catalysts,2017,7(2):45.
    [21] Liu G,Yue R,Jia Y,et al. Catalytic oxidation of benzene over Ce-Mn oxides synthesized by flame spray pyrolysis[J]. Particuology,2013,11(4):454-459.
    [22] Xiong Z,Lei Z,Xu Z,et al. Flame spray pyrolysis synthesized Zn O/Ce O2,nanocomposites for enhanced CO2,photocatalytic reduction under UV-Vis light irradiation[J]. Journal of CO2Utilization,2017,18:53-61.
    [23] Kam R,Selomulya C,Amal R,et al. The influence of La-doping on the activity and stability of Cu/Zn O catalyst for the low-temperature water-gas shift reaction[J].Journal of Catalysis,2010,273(1):73-81.
    [24] Beier M J,Schimmoeller B,Hansen T W,et al. Selective side-chain oxidation of alkyl aromatic compounds catalyzed by cerium modified silver catalysts[J]. Journal of Molecular Catalysis A Chemical,2010,331(1):40-49.
    [25] Cavusoglu G,Miao D,Lichtenberg H,et al. Structure and activity of flame made ceria supported Rh and Pt water gas shift catalysts[J]. Applied Catalysis A General,2015,504:381-390.
    [26] Hotz N,Stutz M J,Loher S,et al. Syngas production from butane using a flame-made Rh/Ce0. 5Zr0. 5O2,catalyst[J]. Applied Catalysis B Environmental,2007,73(3-4):336-344.
    [27] Strobel R,Pratsinis S E,Baiker A. Flame-made Pd/La2O3/Al2O3nanoparticles:thermal stability and catalytic behavior in methane combustion[J]. Journal of Materials Chemistry,2005,15(5):605-610.
    [28] Chiarello G L,Grunwaldtb J D,Ferrib D,et al. Flame-synthesized La Co O3-supported Pd:1. Structure,thermal stability and reducibility[J]. Journal of Catalysis,2007,252(2):127-136.
    [29] Chiarello G L,Ferri D,Grunwaldt J D,et al. Flamesynthesized La Co O3-supported Pd:2. Catalytic behavior in the reduction of NO by H2,under lean conditions[J]. Journal of Catalysis,2007,252(2):137-147.
    [30] Pisduangdaw S,Praserthdam P,Panpranot J,et al.One-step preparation of Pt-Ce and Pt-Sn-Ce/Al2O3,catalysts by flame spray pyrolysis in propane dehydrogenation[J]. Reaction Kinetics Mechanisms and Catalysis,2014,113(1):149-158.
    [31]徐南,李云峰,于俊茹,等.喷雾燃烧法制备Pt/TixCe(1-x)O2纳米颗粒及其CO催化氧化性能[J].华东理工大学学报,2018,44(1):47-54.Xu N,Li Y F,Yu J R,et al. Synthesis of Pt/TixCe(1-x)O2nanoparticles by flame spray pyrolysis and their catalytic activities for CO oxidation[J]. Journal of East China University of Science and Technology,2018,44(1):47-54.
    [32] Dreyer J A H,Grossmann H K,Chen J,et al. Preferential oxidation of carbon monoxide over Pt-Fe Ox/Ce O2,synthesized by two-nozzle flame spray pyrolysis[J]. Journal of Catalysis,2015,329:248-261.
    [33] Strobel R,Krumeich F,Pratsinis S E,et al. Flamederived Pt/Ba/CexZr1-xO2:Influence of support on thermal deterioration and behavior as NOxstorage-reduction catalysts[J]. Journal of Catalysis,2006,243:229-238.
    [34] Kryukov A Y,Vishniakov A V,Oliva C,et al. Catalytic activity for methane flameless combustion and thermal stability of nano-sized lanthanum cobaltites doped with Ce,Pr and Tb[J]. Solid State Phenomena,2007,128(128):255-260.
    [35] Buchneva O,Rossetti I,Biffi C,et al. La-Ag-Co perovskites for the catalytic flameless combustion of methane[J]. Applied Catalysis A General, 2009, 370(1-2):24-33.
    [36] Rossetti I,Forni L. Catalytic flameless combustion of methane over perovskites prepared by flame-hydrolysis[J]. Applied Catalysis B Environmental,2001,33(4):345-352.
    [37] Campagnoli E,Tavares A,Fabbrini L,et al. Effect of preparation method on activity and stability of La MnO3,and La Co O3,catalysts for the flameless combustion of methane[J]. Applied Catalysis B Environmental,2005,55(2):133-139.
    [38] Rossetti I,Allieta M,Biffi C,et al. Oxygen transport in nanostructured lanthanum manganites[J]. Physical Chemistry Chemical Physics,2013,15(39):16779-16787.
    [39] Williams G R,Bayram S B,Rand S C,et al. Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors[J]. Physical Review A,2001,65(1):337-339.
    [40] Kim M,Hinklin T R,Laine R M. Core-shell nanostructured nanopowders along(Ce Ox)x(Al2O3)1-xtieline by liquid-feed flame spray pyrolysis(LF-FSP)[J].Chemistry of Materials,2008,20(16):5154-5162.
    [41] Taylor N J,Laine R M. Extrusion of YAG tubes shows that bottom-up processing is not always optimal[J].Advanced Functional Materials,2014,24(8):1125-1132.
    [42] Marchal J,John T,Baranwal R,et al. Yttrium aluminum garnet nanopowders produced by liquid-feed flame spray pyrolysis(LF-FSP)of metalloorganic precursors[J]. Chemistry of Materials,2004,16(5):822-831.
    [43] Laine R M,Marchal J,Sun H,et al. A new Y3Al5O12phase produced by liquid-feed flame spray pyrolysis(LF-FSP)[J]. Advanced Materials,2005,17(7):830-833.
    [44] Lee J S,Gupta S,Kumar P,et al. Synthesis and characterization of YAG∶Ce3+nanophosphor prepared by flame spray pyrolysis[J]. Ecs Transactions,2009,16(30):1-6.
    [45] Lee J S,Kumar P,Gupta S,et al. Enhanced luminescence properties of YAG∶Ce3+nanophosphor prepared by flame spray pyrolysis[J]. Journal of the Electrochemical Society,2010,157(2):K25-K29.
    [46] Hollingsworth J P,Kuntz J D,Soules T F. Neodymium ion diffusion during sintering of Nd∶YAG transparent ceramics[J]. Journal of Physics D Applied Physics,2009,42(5):052001(1-5).
    [47] Kuntz J D,Roberts J J,Hough M,et al. Multiple synthesis routes to transparent ceramic lutetium aluminum garnet[J]. Scripta Materialia,2007,57(10):960-963.
    [48] Jung D S,Cho J S,Koo H Y,et al. Characteristics of Ce0. 6Tb0. 4MgAl11O19phosphor powders prepared by high temperature flame spray pyrolysis[J]. Journal of Alloys and Compounds,2009,472(472):367-372.
    [49] Kang Y C,Seo D J,Park S B,et al. Direct synthesis of strontium titanate phosphor particles with high luminescence by flame spray pyrolysis[J]. Materials Research Bulletin,2002,37(2):263-269.
    [50] Cherepy N J,Drury O B,Payne S A. Transparent ceramic scintillator fabrication,properties,and applications[J]. Proceedings of SPIE-The International Society for Optical Engineering,2008,7079(7):791-796.
    [51] Qin X,Ju Y G,Bernhard S,et al. Europium-doped yttrium silicate nanophosphors prepared by flame synthesis[J]. Materials Research Bulletin,2007,42(8):1440-1449.
    [52] Hasegawa H,Ueda T,Yokomori T. Y2Si2O7∶Eu/Si O2core shell phosphor particles prepared by flame spray pyrolysis[J]. Proceedings of the Combustion Institute,2013,34(2):2155-2162.
    [53] Kang Y C,Sohn J R,Yoon H S,et al. Improved photoluminescence of Sr5(PO4)3Cl∶Eu2+phosphor particles prepared by flame spray pyrolysis[J]. Journal of the Electrochemical Society,2003,150(2):H38-H42.
    [54] Liang B,Keshishian V,Liu S,et al. Processing liquidfeed flame spray pyrolysis synthesized Mg0. 5Ce0. 2Zr1. 8(PO4)3,nanopowders to free standing thin films and pellets as potential electrolytes in all-solid-state Mg batteries[J]. Electrochimica Acta,2018,272:144-153.
    [55] Song S A,Park S B. Synthesis of silica-coated ceria particles for STI-CMP in a single step by flame spray pyrolysis with an emulsion[J]. Journal of the Electrochemical Society,2011,158(8):K170-K174.
    [56] Feng X D,Sayle D C,Wang Z L,et al. Converting ceria polyhedral nanoparticles into Single-crystal nanospheres[J]. Cheminform,2006,37(36):1504-1508.
    [57] Yoon Y S,Im J M,Shin D W. Microstructure and electrical conductivity of Ni O-YSZ nan70o-powder synthesized by aerosol flame deposition[J]. Ceramics International,2008,34(4):873-876.
    [58] Yoon Y S,Im J M,You H,et al. Fabrication of Ni O/YSZ anode for solid oxide fuel cells by aerosol flame deposition[J]. Journal of the European Ceramic Society,2007,27(13-15):4257-4260.
    [59] Jung Y G,Choi J,Yoon Y,et al. Characterization of La0. 8Sr0. 2MnO3+δnanopowders synthesized by aerosol flame synthesis for SOFC cathode[J]. Journal of Nanoscience and Nanotechnology,2011,11(8):7475.
    [60] Charojrochkul S,Choy K L,Steele B C H. Flame assisted vapour deposition of cathode for solid oxide fuel cells. 1. Microstructure control from processing parameters[J]. Journal of the European Ceramic Society,2004,24(8):2515-2526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700