用户名: 密码: 验证码:
生物质的电化学转化反应及反应器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrochemical reactions and reactors for biomass valorisation
  • 作者:骆枫 ; 林力 ; 李振臣 ; 李文钰 ; 陈先林 ; 沙沙 ; 罗涛
  • 英文作者:LUO Feng;LIN Li;LI Zhenchen;LI Wenyu;CHEN Xianlin;SHA Sha;LUO Tao;Sichuan Engineering Laboratory of Decommission and Reclamation, Nucelar Power Institute of China;School of Chemical Engineering, Sichuan University;
  • 关键词:电化学转化 ; 生物质 ; 反应器 ; 平台分子 ; 生物燃料
  • 英文关键词:electrochemical conversion;;biomass;;reactor;;platform molecule;;biofuel
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:中国核动力研究设计院四川省退役治理工程实验室;四川大学化学工程学院;
  • 出版日期:2018-11-19 14:26
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 语种:中文;
  • 页:HGSZ201903002
  • 页数:16
  • CN:03
  • ISSN:11-1946/TQ
  • 分类号:21-36
摘要
生物质通过电化学转化合成燃料和高附加值化学品是未来化学工业发展的一个重要方向,也是现代社会实现可持续发展的重要保障。在可再生能源产能不断提升,而现阶段暂无成熟的大规模能源存储技术的背景下,如何有效地利用可再生能源所产电能进行生物质的电化学转化是目前学术界和工业界关注的一个热点。本文介绍了近年来该领域的研究进展,着重阐释了关键的电化学反应和相关反应器的设计。从生物质衍生的平台分子的电化学转化取得了一定的进展,然而从生物质到平台分子的电化学转化还面临较大的挑战。提高平台分子和生物质电化学反应的选择性有赖于合适的电极材料和催化剂,而将原位分离与电极反应耦合的设计能够提高产物的收率,特别是在生物质直接电化学转化的过程中。
        Electrochemical conversion of biomass to fuel and high value-added chemicals is an important direction for the chemical industry, and this could also facilitate the sustainable development of society. With the increasing energy supply from renewable sources, and currently the limited installation of large-scale energy storage and conversion systems, electrochemical conversion of biomass together with the efficient utilization of renewable energy is drawing attention from both academia and industry. This perspective describes recent development in this field,and focuses on key reactions and related electrochemical reactor design. The electrochemical conversion of platform molecules derived from biomass has made some progress, but the electrochemical conversion from biomass to platform molecules faces greater challenges. Selectivity improvement in these electrocatalytic conversion relies on suitable electrode material and electrocatalysts. Reaction-separation coupled electrochemical reactors can increase product yield, especially for direct electrocatalytic conversion of biomass.
引文
[1]Shafiee S,Topal E.When will fossil fuel reserves be diminished?[J].Energy Policy,2009,37(1):181-189.
    [2]Ragauskas A J,Williams C K,Davison B H,et al.The path forward for biofuels and biomaterials[J].Science,2006,311(5760):484-489.
    [3]Cherubini F.The biorefinery concept:using biomass instead of oil for producing energy and chemicals[J].Energy Conversion and Management,2010,51(7):1412-1421.
    [4]Mckendry P.Energy production from biomass(Part 1):Overview of biomass[J].Bioresource Technology,2002,83(1):37-46.
    [5]Ruiz H A,Rodriguez-Jasso R M,Fernandes B D,et al.Hydrothermal processing,as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept:a review[J].Renewable&Sustainable Energy Reviews,2013,21:35-51.
    [6]Kan T,Strezov V,Evans T J.Lignocellulosic biomass pyrolysis:a review of product properties and effects of pyrolysis parameters[J].Renewable&Sustainable Energy Reviews,2016,57:1126-1140.
    [7]Sansaniwal S K,Pal K,Rosen M A,et al.Recent advances in the development of biomass gasification technology:a comprehensive review[J].Renewable&Sustainable Energy Reviews,2017,72:363-384.
    [8]Yang H,Yan R,Chen H,et al.Characteristics of hemicellulose,cellulose and lignin pyrolysis[J].Fuel,2007,86(12/13):1781-1788.
    [9]Dorrestijn E,Laarhoven L J J,Arends I,et al.The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal[J].Journal of Analytical and Applied Pyrolysis,2000,54(1/2):153-192.
    [10]Balat M.Biomass energy and biochemical conversion processing for fuels and chemicals[J].Energy Sources Part A-Recovery Utilization and Environmental Effects,2006,28(6):517-525.
    [11]Parsell T,Yohe S,Degenstein J,et al.A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass[J].Green Chemistry,2015,17(3):1492-1499.
    [12]Chheda J N,Huber G W,Dumesic J A.Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals[J].Angewandte Chemie-International Edition,2007,46(38):7164-7183.
    [13]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,(3):345-359.Jiang Z M.Reflections on energy issues in China[J].Journal of Shanghai Jiao Tong University,2008,(3):345-359.
    [14]ITER.60 years of progress[EB/OL].[2018-10-31].https://www.iter.org/sci/BeyondITER.
    [15]Yang Z G,Zhang J L,Kintner-Meyer M C W,et al.Electrochemical energy storage for green grid[J].Chemical Reviews,2011,111(5):3577-3613.
    [16]Carrasco J M,Franquelo L G,Bialasiewicz J T,et al.Powerelectronic systems for the grid integration of renewable energy sources:a survey[J].IEEE Transactions on Industrial Electronics,2006,53(4):1002-1016.
    [17]Dunn B,Kamath H,Tarascon J M.Electrical energy storage for the grid:a battery of choices[J].Science,2011,334(6058):928-935.
    [18]Aust B,Morscher C.Negative strompreise in Deutschland[J].Wirtschaftdienst,2017,97(4):304-306.DOI:10.1007/s10273-017-2135-0.
    [19]de Graaff M.Power-2-Chemicals[EB/OL].[2018-10-31]https://www.voltachem.com/research/power-2-chemicals.
    [20]Du L,Shao Y Y,Sun J M,et al.Electrocatalytic valorisation of biomass derived chemicals[J].Catalysis Science&Technology,2018,8(13):3216-3232.
    [21]Mitsos A,Asprion N,Floudas C A,et al.Challenges in process optimization for new feedstocks and energy sources[J].Computers&Chemical Engineering,2018,113:209-221.
    [22]Bebelis S,Bouzek K,Cornell A,et al.Highlights during the development of electrochemical engineering[J].Chemical Engineering Research&Design,2013,91(10):1998-2020.
    [23]Kwon Y,Schouten K J P,van der Waal J C,et al.Electrocatalytic conversion of furanic compounds[J].ACS Catalysis,2016,6(10):6704-6717.
    [24]Simoes M,Baranton S,Coutanceau C.Electrochemical valorisation of glycerol[J].ChemSusChem,2012,5(11):2106-2124.
    [25]Moehle S,Zirbes M,Rodrigo E,et al.Modern electrochemical aspects for the synthesis of value-added organic products[J].Angewandte Chemie-International Edition,2018,57(21):6018-6041.
    [26]Zirbes M,Waldvogel S R.Electro-conversion as sustainable method for the fine chemical production from the biopolymer lignin[J].Current Opinion in Green and Sustainable Chemistry,2018,14:19-25.
    [27]Maki-Arvela P,Salmi T,Holmbom B,et al.Synthesis of sugars by hydrolysis of hemicelluloses-a review[J].Chemical Reviews,2011,111(9):5638-5666.
    [28]Rinaldi R,Jastrzebski R,Clough M T,et al.Paving the way for lignin valorisation:Recent advances in bioengineering,biorefining and catalysis[J].Angewandte Chemie-International Edition,2016,55(29):8164-8215.
    [29]Shuai L,Amiri M T,Questell-Santiago Y M,et al.Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization[J].Science,2016,354(6310):329-333.
    [30]Yu J C,Baizer M M,Nobe K.Electrochemical generated acid catalysis of cellulose hydrolysis[J].Journal of The Electrochemical Society,1988,135(1):83-87.
    [31]Meng D,Li G,Liu Z,et al.Study of depolymerization of cotton cellulose by Pb/PbO2anode electrochemical catalysis in sulfuric acid solution[J].Polymer Degradation and Stability,2011,96(7):1173-1178.
    [32]Werpy T,Petersen G,Aden A,et al.,Results of screening for potential candidates from sugars and synthesis gas[M]//Top ValueAdded Chemicals from Biomass:Volume 1.Oak Ridge:U.S.Department of Energy,2004.
    [33]Holladay J E,White J F,Bozell J J,et al.Results of screening for potential candidates from biorefinery lignin[M]//Top Value-Added Chemicals from Biomass:Volume 2.Oak Ridge:U.S.Department of Energy,2007.
    [34]Carlos Serrano-Ruiz J,Pineda A,Mariana Balu A,et al.Catalytic transformations of biomass-derived acids into advanced biofuels[J].Catalysis Today,2012,195(1):162-168.
    [35]Deng L,Li J,Lai D M,et al.Catalytic conversion of biomassderived carbohydrates into gamma-valerolactone without using an external H2supply[J].Angewandte Chemie-International Edition,2009,48(35):6529-6532.
    [36]Eppinger J,Huang K W.Formic acid as a hydrogen energy carrier[J].ACS Energy Letters,2017,2(1):188-195.
    [37]VoltaChem.Formic acid,the new energy carrier[EB/OL].[2018-10-31].https://www.voltachem.com/news/formic-acid-the-newenergy-carrier.
    [38]Bozell J J,Moens L,Elliott D C,et al.Production of levulinic acid and use as a platform chemical for derived products[J].Resources Conservation and Recycling,2000,28(3/4):227-239.
    [39]Hayes M H B.Biochar and biofuels for a brighter future[J].Nature,2006,443(7108):144-144.
    [40]Nilges P,Dos Santos T R,Harnisch F,et al.Electrochemistry for biofuel generation:electrochemical conversion of levulinic acid to octane[J].Energy&Environmental Science,2012,5(1):5231-5235.
    [41]Rosatella A A,Simeonov S P,Frade R F M,et al.5-Hydroxymethylfurfural(HMF)as a building block platform:biological properties,synthesis and synthetic applications[J].Green Chemistry,2011,13(4):754-793.
    [42]van Putten R J,van der Waal J C,de Jong E,et al.Hydroxymethylfurfural,a versatile platform chemical made from renewable resources[J].Chemical Reviews,2013,113(3):1499-1597.
    [43]Pan M,Shu G,Pan J,et al.Performance comparison of 2-methylfuran and gasoline on a spark-ignition engine with cooled exhaust gas recirculation[J].Fuel,2014,132:36-43.
    [44]Alipour S,Li B,Varanasi S,et al.Methods for high yield production of furans from biomass sugars at mild operating conditions:US20160281120[P].2016-09-29.
    [45]Rieser K P,de Vries A.BASF and Avantium intend to establish Joint Venture[EB/OL].[2018-10-31].https://www.avantium.com/press-releases/2016/basf-avantium-intend-establish-jointventure/.
    [46]Cheng F,Brewer C E.Producing jet fuel from biomass lignin:potential pathways to alkyl benzenes and cycloalkanes[J].Renewable&Sustainable Energy Reviews,2017,72:673-722.
    [47]Atkins P,Paula J D.Physical Chemistry[M].8th ed.Great Britain:Oxford University Press,2006.
    [48]Lapicque F.Electrochemical reactors[M]//Chemical Engineering and Chemical Process Technology:Volume 3.United Nations Educational Scientific and Cultural Organization,and Encyclopedia of Life Support Systems(UNESCO-EOLSS),2010:160-191.
    [49]Electrochemical reactors[EB/OL].[2018-10-31].https://web.vscht.cz/~paidarm/ACHP/erasmus/ElectrochemReactors_eng.pdf.
    [50]刘俊吉,周亚平,李松林.物理化学[M].6版.北京:高等教育出版社,2009.Liu J J,Zhou Y P,Li S L.Physical Chemistry[M].6th ed.Beijing:Higher Education Press,2009
    [51]Agar J N,Bowden F P.The kinetics of electrode reactions(I and II)[J].Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences,1938,169(A937):0206-0234.
    [52]Walsh F C.The kinetics of electrode-reactions(2):Mass-transfer and mixed control[J].Transactions of the Institute of Metal Finishing,1992,70:95-99.
    [53]Roduner E.Selected fundamentals of catalysis and electrocatalysis in energy conversion reactions-a tutorial[J].Catalysis Today,2018,309:263-268.
    [54]Bagotsky V S.Fundamentals of Electrochemistry[M].2nd ed.John Wiley&Sons,Inc.,2005.
    [55]Walsh F,Reade G.Design and performance of electrochemical reactors for efficient synthesis and environmental treatment(1):Electrode gemoetry and figures of merit[J].Analyst,1994,119(5):791-796.
    [56]Pletcher D,Green R A,Brown R C D.Flow electrolysis cells for the synthetic organic chemistry laboratory[J].Chemical Reviews,2018,118(9):4573-4591.
    [57]Park K,Pintauro P N,Baizer M M,et al.Current efficiencies and regeneration of poisoned Raney-Nickel in the electrohydrogenation of glucose to sorbitol[J].Journal of Applied Electrochemistry,1986,16(6):941-946.
    [58]Pintauro P N,Johnson D K,Park K,et al.The paired electrochemical synthesis of sorbitol and gluconic acid in undivided flow cels(1)[J].Journal of Applied Electrochemistry,1984,14(2):209-220.
    [59]Garcia-Mateos F J,Cordero-Lanzac T,Berenguer R,et al.Lignin-derived Pt supported carbon(submicron)fiber electrocatalysts for alcohol electro-oxidation[J].Applied Catalysis B-Environmental,2017,211:18-30.
    [60]Ding Y,Chen M W.Nanoporous metals for catalytic and optical applications[J].MRS Bulletin,2009,34(8):569-576.
    [61]Kwon Y.Biomass electrochemistry:from cellulose to sorbitol[D].Leiden University,2013.
    [62]Holzhaeuser F J,Artz J,Palkovits S,et al.Electrocatalytic upgrading of itaconic acid to methylsuccinic acid using fermentation broth as a substrate solution[J].Green Chemistry,2017,19(10):2390-2397.
    [63]Zhang Z,Song J,Han B.Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids[J].Chemical Reviews,2017,117(10):6834-6880.
    [64]Di Marino D,Stoeckmann D,Kriescher S,et al.Electrochemical depolymerisation of lignin in a deep eutectic solvent[J].Green Chemistry,2016,18(22):6021-6028.
    [65]Dier T K F,Rauber D,Durneata D,et al.Sustainable electrochemical depolymerization of lignin in reusable ionic liquids[J].Scientific Reports,2017,7(1):5041-5052.
    [66]Reichert E,Wintringer R,Volmer D A,et al.Electro-catalytic oxidative cleavage of lignin in a protic ionic liquid[J].Physical Chemistry Chemical Physics,2012,14(15):5214-5221.
    [67]Hossain M M,Aldous L.Ionic liquids for lignin processing:dissolution,isolation,and conversion[J].Australian Journal of Chemistry,2012,65(11):1465-1477.
    [68]瞿广飞,赵茜,李军燕,等.以离子液体和超临界CO2为介质的生物质电化学液化方法及装置:105441107 A[P].2016-03-30.Qu G F,Zhao Q,Li J Y,et al.Methods and set-ups for the electrochemical liquification of biomass with ionic liquids and super-critical CO2as reaction medium:105441107 A[P].2016-03-30.
    [69]Tian M,Wen J,Macdonald D,et al.A novel approach for lignin modification and degradation[J].Electrochemistry Communications,2010,12(4):527-530.
    [70]Shao D,Liang J,Cui X,et al.Electrochemical oxidation of lignin by two typical electrodes:Ti/Sb-SnO2and Ti/PbO2[J].Chemical Engineering Journal,2014,244:288-295.
    [71]Zhu H,Wang L,Chen Y,et al.Electrochemical depolymerization of lignin into renewable aromatic compounds in a non-diaphragm electrolytic cell[J].RSC Advances,2014,4(56):29917-29924.
    [72]Zhu H,Chen Y,Qin T,et al.Lignin depolymerization via an integrated approach of anode oxidation and electro-generated H2O2oxidation[J].RSC Advances,2014,4(12):6232-6238.
    [73]Liu M,Wen Y,Qi J,et al.Fine chemicals prepared by bamboo lignin degradation through electrocatalytic redox between Cu cathode and Pb/PbO2anode in alkali solution[J].Chemistry Select,2017,2(17):4956-4962.
    [74]Luo T,Abdu S,Wessling M.Selectivity of ion exchange membranes:a review[J].Journal of Membrane Science,2018,555:429-454.
    [75]Stiefel S,Schmitz A,Peters J,et al.An integrated electrochemical process to convert lignin to value-added products under mild conditions[J].Green Chemistry,2016,18(18):4999-5007.
    [76]Stiefel S,Marks C,Schmidt T,et al.Overcoming lignin heterogeneity:reliably characterizing the cleavage of technical lignin[J].Green Chemistry,2016,18(2):531-540.
    [77]Stiefel S,Loelsberg J,Kipshagen L,et al.Controlled depolymerization of lignin in an electrochemical membrane reactor[J].Electrochemistry Communications,2015,61:49-52.
    [78]Di Marino D,Aniko V,Stocco A,et al.Emulsion electrooxidation of kraft lignin[J].Green Chemistry,2017,19(20):4778-4784.
    [79]Kim H J,Lee J,Green S K,et al.Selective glycerol oxidation by electrocatalytic dehydrogenation[J].ChemSusChem,2014,7(4):1051-1056.
    [80]Sekar N,Ramasamy R P.Electrochemical impedance spectroscopy for microbial fuel cell characterization[J].Journal of Microbial and Biochemical Technology,2013,S6:004.DOI:10.4172/1948-5948.S6-004.
    [81]赵博.电化学方法在生物质催化转化中的应用研究[D].合肥:中国科学技术大学,2015.Zhao B.Studies on the catalytic conversion of biomass with electrochemical methods[D].Hefei:University of Science and Technology of China,2015.
    [82]Schmitt D,Regenbrecht C,Hartmer M,et al.Highly selective generation of vanillin by anodic degradation of lignin:a combined approach of electrochemistry and product isolation by adsorption[J].Beilstein Journal of Organic Chemistry,2015,11:473-480.
    [83]Harrison K W,Martin G D,Ramsden T G,et al.The wind-tohydrogen project:operational experience,performance testing,and systems integration[R/OL].Colorado:U.S.Department of Energy,2009.https://www.nrel.gov/docs/fy09osti/44082.pdf.
    [84]Smith C Z,Utley J H P,Hammond J K.Electro-organic reactions.Part 60[1].The electro-oxidative conversion at laboratory scale of a lignosulfonate into vanillin in an FM01filter press flow reactor:preparative and mechanistic aspects[J].Journal of Applied Electrochemistry,2011,41(4):363-375.
    [85]Ponce De Leon C,Hussey W,Frazao F,et al.The 3D printing of a polymeric electrochemical cell body and its characterisation[J].Chemical Engineering Transactions,2014,41(Special Issue):1-6.
    [86]L?lsberg J,Starck O,Stiefel S,et al.3D-printed electrodes with improved mass transport properties[J].ChemElectroChem,2017,4(12):3309-3313.
    [87]Zirbes M,Schmitt D,Beiser N,et al.Anodic degradation of lignin at active transition metal-based alloys and performanceenhanced anodes[J].ChemElectroChem,2018.DOI:10.1002/celc.201801218.
    [88]de Graaff M.VoltaChem demonstrates continuous electrochemical FDCA production[EB/OL].[2018-10-31].https://www.voltachem.com/news/voltachem-demonstrates-continuous-electrochemicalfdca-production,2017.
    [89]李振环,曹磊,苏坤梅,等.一种次氯酸钠电催化5-HMF制备FDCA的方法:108130554A[P].2018-06-08.Li Z H,Cao L,Su K M,et al.A method for the electrochemical conversion of 5-HMF to FDCA with sodium hypochlorite as mediator:108130554A[P].2018-06-08.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700